Home > Statistical Methods calculators > Population Variance, Standard deviation and coefficient of variation for mixed data example

Population Variance, Standard deviation and coefficient of variation for mixed data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Population Variance Example
  3. Population Standard deviation Example
  4. Population coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Population Variance, Standard deviation and coefficient of variation
  3. Sample Variance, Standard deviation and coefficient of variation

1. Mean, Median and Mode
(Previous method)
2. Population Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum fx)/n`
2. Population Variance `sigma^2 = (sum f*x^2 - (sum f*x)^2/n)/n`
3. Population Standard deviation `sigma = sqrt((sum f*x^2 - (sum f*x)^2/n)/n)`
4. Coefficient of Variation (Population) `=sigma / bar x * 100 %`

Examples
1. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following mixed data
ClassFrequency
13
24
510
6 - 1023
10 - 2020
20 - 3020
30 - 5015
50 - 703
70 - 1002


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
13 1 `1=1` 3 `3=3xx1`
`(4)=(2)xx(3)`
 3 `3=3xx1`
`(5)=(4)xx(3)`
24 2 `2=2` 8 `8=4xx2`
`(4)=(2)xx(3)`
 16 `16=8xx2`
`(5)=(4)xx(3)`
510 5 `5=5` 50 `50=10xx5`
`(4)=(2)xx(3)`
 250 `250=50xx5`
`(5)=(4)xx(3)`
6 - 1023 8 `8=(6+10)/2` 184 `184=23xx8`
`(4)=(2)xx(3)`
 1472 `1472=184xx8`
`(5)=(4)xx(3)`
10 - 2020 15 `15=(10+20)/2` 300 `300=20xx15`
`(4)=(2)xx(3)`
 4500 `4500=300xx15`
`(5)=(4)xx(3)`
20 - 3020 25 `25=(20+30)/2` 500 `500=20xx25`
`(4)=(2)xx(3)`
 12500 `12500=500xx25`
`(5)=(4)xx(3)`
30 - 5015 40 `40=(30+50)/2` 600 `600=15xx40`
`(4)=(2)xx(3)`
 24000 `24000=600xx40`
`(5)=(4)xx(3)`
50 - 703 60 `60=(50+70)/2` 180 `180=3xx60`
`(4)=(2)xx(3)`
 10800 `10800=180xx60`
`(5)=(4)xx(3)`
70 - 1002 85 `85=(70+100)/2` 170 `170=2xx85`
`(4)=(2)xx(3)`
 14450 `14450=170xx85`
`(5)=(4)xx(3)`
---------------
`n = 100`-----`sum f*x=1995``sum f*x^2=67991`


Mean `bar x = (sum fx)/n`

`=1995/100`

`=19.95`



Population Variance `sigma^2 = (sum f*x^2 - (sum f*x)^2/n)/n`

`=(67991 - (1995)^2/100)/100`

`=(67991 - 39800.25)/100`

`=28190.75/100`

`=281.9075`



Population Standard deviation `sigma = sqrt((sum f*x^2 - (sum f*x)^2/n)/n)`

`=sqrt((67991 - (1995)^2/100)/100)`

`=sqrt((67991 - 39800.25)/100)`

`=sqrt(28190.75/100)`

`=sqrt(281.9075)`

`=16.7901`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=16.7901/19.95 * 100 %`

`=84.16 %`
2. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
21224
323618
424832
5 - 98756392
10 - 1415121802160
15 - 198171362312
20 - 29424.5982401
---------------
`n = 40`-----`sum f*x=486``sum f*x^2=7319`


Mean `bar x = (sum fx)/n`

`=486/40`

`=12.15`



Population Variance `sigma^2 = (sum f*x^2 - (sum f*x)^2/n)/n`

`=(7319 - (486)^2/40)/40`

`=(7319 - 5904.9)/40`

`=1414.1/40`

`=35.3525`



Population Standard deviation `sigma = sqrt((sum f*x^2 - (sum f*x)^2/n)/n)`

`=sqrt((7319 - (486)^2/40)/40)`

`=sqrt((7319 - 5904.9)/40)`

`=sqrt(1414.1/40)`

`=sqrt(35.3525)`

`=5.9458`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=5.9458/12.15 * 100 %`

`=48.94 %`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Mean, Median and Mode
(Previous method)
2. Population Variance Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.