1. Find value of sin(30)⋅cos(60)+sin(30)⋅cos(60)Solution:sin(30)⋅cos(60)+sin(30)⋅cos(60)=sin(30)cos(60)+sin(30)cos(60)=(12)⋅(12)+(12)⋅(12)=14+14=12
2. Find value of sin(30)⋅csc(30)-sin(60)⋅csc(60)Solution:sin(30)⋅csc(30)-sin(60)⋅csc(60)=sin(30)csc(30)-sin(60)csc(60)=(12)⋅(2)-(√32)⋅(2√3)=1-1=0
3. Find value of 2tan(60)1+tan2(60)Solution:2tan(60)1+tan2(60)=2tan(60)1+tan2(60)2tan(60)=2√3
=2tan(60)
=2⋅(√3)
=2√3
1+tan2(60)=4
=1+tan2(60)
=1+(√32)
=1+3
=4
=2√34=√32
4. Find value of 3sec(60)+2tan(45)+csc(30)sin2(60)+cot2(45)Solution:3sec(60)+2tan(45)+csc(30)sin2(60)+cot2(45)=3sec(60)+2tan(45)+csc(30)sin2(60)+cot2(45)3sec(60)+2tan(45)+csc(30)=10
=3sec(60)+2tan(45)+csc(30)
=3⋅(2)+2⋅(1)+(2)
=6+2+2
=10
sin2(60)+cot2(45)=74
=sin2(60)+cot2(45)
=((√32)2)+(12)
=34+1
=74
=1074=407
5. Find value of 2sin(30)+2tan(45)-3cos(60)-2cos2(30)Solution:2sin(30)+2tan(45)-3cos(60)-2cos2(30)=2sin(30)+2tan(45)-3cos(60)-2cos2(30)=2⋅(12)+2⋅(1)-3⋅(12)-2⋅((√32)2)=1+2+-32+-32=0
6. Prove result sin(30)⋅cos(45)⋅tan(60)=sin(45)⋅cos(60)⋅cot(30)Solution:LHS
=sin(30)cos(45)tan(60)=(12)⋅(1√2)⋅(√3)=√32√2RHS
=sin(45)cos(60)cot(30)=(1√2)⋅(12)⋅(√3)=√32√2Result is proved...
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then