Home > Calculus calculators > Simplifying trigonometric equations, proving identities example

1. Simplifying trignometric equations, proving identities and evaluating functions example ( Enter your problem )
  1. `sin(30)*cos(60)+sin(30)*cos(60)` like Example
  2. `sin^2(50)+sin^2(40)=1` like Example
  3. `tan(x)+cot(x)` like Example
  4. `cot^4(x)+cot^2(x)` like Example
Other related methods
  1. Simplifying trigonometric equations, proving identities
  2. Find the value of other five trigonometric functions
  3. Find the value of other five trigonometric functions and solve expression
  4. For P(3,4), find the value of all six trigonometric functions
  5. The Equation for the terminal Side `theta` is `2x+y=0, x>=0`. Find the value of all six trigonometric functions

2. `sin^2(50)+sin^2(40)=1` like Example
(Next example)

1. `sin(30)*cos(60)+sin(30)*cos(60)` like Example





1. Find value of `sin(30)*cos(60)+sin(30)*cos(60)`

Solution:
`sin(30)*cos(60)+sin(30)*cos(60)`

`=sin(30)cos(60)+sin(30)cos(60)`

`=(1/2)*(1/2)+(1/2)*(1/2)`

`=1/4+1/4`

`=1/2`
2. Find value of `sin(30)*csc(30)-sin(60)*csc(60)`

Solution:
`sin(30)*csc(30)-sin(60)*csc(60)`

`=sin(30)csc(30)-sin(60)csc(60)`

`=(1/2)*(2)-(sqrt(3)/2)*(2/sqrt(3))`

`=1-1`

`=0`
3. Find value of `(2tan(60))/(1+tan^2(60))`

Solution:
`(2tan(60))/(1+tan^2(60))`

`=(2tan(60))/(1+tan^2(60))`

`2tan(60)=2sqrt(3)`
`=2tan(60)`

`=2*(sqrt(3))`

`=2sqrt(3)`


`1+tan^2(60)=4`
`=1+tan^2(60)`

`=1+(sqrt(3)^2)`

`=1+3`

`=4`


`=(2sqrt(3))/(4)`

`=(sqrt(3))/2`
4. Find value of `(3sec(60)+2tan(45)+csc(30))/(sin^2(60)+cot^2(45))`

Solution:
`(3sec(60)+2tan(45)+csc(30))/(sin^2(60)+cot^2(45))`

`=(3sec(60)+2tan(45)+csc(30))/(sin^2(60)+cot^2(45))`

`3sec(60)+2tan(45)+csc(30)=10`
`=3sec(60)+2tan(45)+csc(30)`

`=3*(2)+2*(1)+(2)`

`=6+2+2`

`=10`


`sin^2(60)+cot^2(45)=7/4`
`=sin^2(60)+cot^2(45)`

`=((sqrt(3)/2)^2)+(1^2)`

`=3/4+1`

`=7/4`


`=(10)/(7/4)`

`=40/7`
5. Find value of `2sin(30)+2tan(45)-3cos(60)-2cos^2(30)`

Solution:
`2sin(30)+2tan(45)-3cos(60)-2cos^2(30)`

`=2sin(30)+2tan(45)-3cos(60)-2cos^2(30)`

`=2*(1/2)+2*(1)-3*(1/2)-2*((sqrt(3)/2)^2)`

`=1+2+(-3)/2+(-3)/2`

`=0`
6. Prove result `sin(30)*cos(45)*tan(60)=sin(45)*cos(60)*cot(30)`

Solution:
LHS `=sin(30)cos(45)tan(60)`

`=(1/2)*(1/sqrt(2))*(sqrt(3))`

`=(sqrt(3))/(2sqrt(2))`

RHS `=sin(45)cos(60)cot(30)`

`=(1/sqrt(2))*(1/2)*(sqrt(3))`

`=(sqrt(3))/(2sqrt(2))`

Result is proved...


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. `sin^2(50)+sin^2(40)=1` like Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.