|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solving tridiagonal matrix system of equations using Thomas algorithm method calculator
|
1. `2x1+3x2=8,x1+2x2-x3=2,x2+2x3=8`
2. `3x1-x2=5,2x1-3x2+2x3=5,x2+2x3+5x4=10,x3-x4=1`
3. `4x1+8x2=8,8x1+18x2+2x3=18,2x2+5x3+1.5x4=0.5,1.5x3+1.75x4=1.75`
4. `2.04x1-x2=48.8,-x1+2.04x2-x3=0.8,-x2+2.04x3=0.8`
|
Example1. Solve Equations 2x1+3x2=8;x1+2x2-x3=2;x2+2x3=8 using Thomas algorithm methodSolution:Solving tridiagonal matrix system of equations using Thomas algorithm method Total Equations are `3` `2x1+3x2+0x3=8 -> (1)` `x1+2x2-x3=2 -> (2)` `0x1+x2+2x3=8 -> (3)` Converting given equations into matrix form | `2` | `3` | `0` | | `8` | | | `1` | `2` | `-1` | | `2` | | | `0` | `1` | `2` | | `8` | |
Identify each number above with Thomas algorithm notation | `b_1` | `c_1` | `0` | | `d_1` | | | `a_2` | `b_2` | `c_2` | | `d_2` | | | `0` | `a_3` | `b_3` | | `d_3` | |
Sub diagonal values are `a_2=1,a_3=1` Main diagonal values are `b_1=2,b_2=2,b_3=2` Super diagonal values are `c_1=3,c_2=-1` Right-hand side values are `d_1=8,d_2=2,d_3=8` Step-1 :`y_i=b_i-(a_i * c_(i-1))/(y_(i-1)), i=2,3``y_1=b_1``=2` `y_2=b_2-(a_2 * c_1)/(y_1)``=2-(1 * 3)/(2)` `=2-1.5` `=0.5` `y_3=b_3-(a_3 * c_2)/(y_2)``=2-(1 * -1)/(0.5)` `=2+2` `=4` Step-2 :`z_i=(d_i-a_i*z_(i-1))/(y_i), i=2,3``z_1=d_1/y_1``=8/2=4` `z_2=(d_2-a_2*z_1)/(y_2)``=(2 - 1 * 4)/(0.5)` `=(-2)/(0.5)` `=-4` `z_3=(d_3-a_3*z_2)/(y_3)``=(8 - 1 * (-4))/(4)` `=(12)/(4)` `=3` Step-3 :`x_i=z_i-(c_i*x_(i+1))/(y_i), i=2,1``x_3=z_3``=3` `x_2=z_2-(c_2*x_3)/(y_2)``=-4-((-1) * 3)/(0.5)` `=-4+6` `=2` `x_1=z_1-(c_1*x_2)/(y_1)``=4-(3 * 2)/(2)` `=4-3` `=1` Solution is `x_1=1` `x_2=2` `x_3=3`
|
|
|
|
|
|
|
|