Home > Matrix & Vector calculators > Solving tridiagonal matrix system of equations using Thomas algorithm method example

11. Thomas algorithm method example ( Enter your problem )
  1. Example `2x1+3x2=8,x1+2x2-x3=2,x2+2x3=8`
  2. Example `3x1-x2=5,2x1-3x2+2x3=5,x2+2x3+5x4=10,x3-x4=1`
  3. Example `4x1+8x2=8,8x1+18x2+2x3=18,2x2+5x3+1.5x4=0.5,1.5x3+1.75x4=1.75`
  4. Example `2.04x1-x2=48.8,-x1+2.04x2-x3=0.8,-x2+2.04x3=0.8`
Other related methods
  1. Inverse Matrix method
  2. Cramer's Rule method
  3. Gauss-Jordan Elimination method
  4. Gauss Elimination Back Substitution method
  5. Gauss Seidel method
  6. Gauss Jacobi method
  7. Elimination method
  8. LU decomposition using Gauss Elimination method
  9. LU decomposition using Doolittle's method
  10. LU decomposition using Crout's method
  11. Cholesky decomposition method
  12. SOR (Successive over-relaxation) method
  13. Relaxation method
  14. Thomas algorithm method

13. Relaxation method
(Previous method)
2. Example `3x1-x2=5,2x1-3x2+2x3=5,x2+2x3+5x4=10,x3-x4=1`
(Next example)

1. Example `2x1+3x2=8,x1+2x2-x3=2,x2+2x3=8`





1. Solve Equations 2x1+3x2=8;x1+2x2-x3=2;x2+2x3=8 using Thomas algorithm method

Solution:
Solving tridiagonal matrix system of equations using Thomas algorithm method
Total Equations are `3`

`2x1+3x2+0x3=8 -> (1)`

`x1+2x2-x3=2 -> (2)`

`0x1+x2+2x3=8 -> (3)`

Converting given equations into matrix form
`2``3``0``8`
`1``2``-1``2`
`0``1``2``8`


Identify each number above with Thomas algorithm notation
`b_1``c_1``0``d_1`
`a_2``b_2``c_2``d_2`
`0``a_3``b_3``d_3`


Sub diagonal values are
`a_2=1,a_3=1`

Main diagonal values are
`b_1=2,b_2=2,b_3=2`

Super diagonal values are
`c_1=3,c_2=-1`

Right-hand side values are
`d_1=8,d_2=2,d_3=8`

Step-1 :
`y_i=b_i-(a_i * c_(i-1))/(y_(i-1)), i=2,3`

`y_1=b_1``=2`

`y_2=b_2-(a_2 * c_1)/(y_1)`

`=2-(1 * 3)/(2)`

`=2-1.5`

`=0.5`

`y_3=b_3-(a_3 * c_2)/(y_2)`

`=2-(1 * -1)/(0.5)`

`=2+2`

`=4`

Step-2 :
`z_i=(d_i-a_i*z_(i-1))/(y_i), i=2,3`

`z_1=d_1/y_1``=8/2=4`

`z_2=(d_2-a_2*z_1)/(y_2)`

`=(2 - 1 * 4)/(0.5)`

`=(-2)/(0.5)`

`=-4`

`z_3=(d_3-a_3*z_2)/(y_3)`

`=(8 - 1 * (-4))/(4)`

`=(12)/(4)`

`=3`

Step-3 :
`x_i=z_i-(c_i*x_(i+1))/(y_i), i=2,1`

`x_3=z_3``=3`

`x_2=z_2-(c_2*x_3)/(y_2)`

`=-4-((-1) * 3)/(0.5)`

`=-4+6`

`=2`

`x_1=z_1-(c_1*x_2)/(y_1)`

`=4-(3 * 2)/(2)`

`=4-3`

`=1`

Solution is
`x_1=1`

`x_2=2`

`x_3=3`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



13. Relaxation method
(Previous method)
2. Example `3x1-x2=5,2x1-3x2+2x3=5,x2+2x3+5x4=10,x3-x4=1`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.