1. Solve Equations 2x1+3x2=8;x1+2x2-x3=2;x2+2x3=8 using Thomas algorithm methodSolution:Solving tridiagonal matrix system of equations using Thomas algorithm method
Total Equations are `3`
`2x1+3x2+0x3=8 -> (1)`
`x1+2x2-x3=2 -> (2)`
`0x1+x2+2x3=8 -> (3)`
Converting given equations into matrix form
| `2` | `3` | `0` | | `8` | |
| `1` | `2` | `-1` | | `2` | |
| `0` | `1` | `2` | | `8` | |
Identify each number above with Thomas algorithm notation
| `b_1` | `c_1` | `0` | | `d_1` | |
| `a_2` | `b_2` | `c_2` | | `d_2` | |
| `0` | `a_3` | `b_3` | | `d_3` | |
Sub diagonal values are
`a_2=1,a_3=1`
Main diagonal values are
`b_1=2,b_2=2,b_3=2`
Super diagonal values are
`c_1=3,c_2=-1`
Right-hand side values are
`d_1=8,d_2=2,d_3=8`
Step-1 :`y_i=b_i-(a_i * c_(i-1))/(y_(i-1)), i=2,3``y_1=b_1``=2`
`y_2=b_2-(a_2 * c_1)/(y_1)``=2-(1 * 3)/(2)`
`=2-1.5`
`=0.5`
`y_3=b_3-(a_3 * c_2)/(y_2)``=2-(1 * -1)/(0.5)`
`=2+2`
`=4`
Step-2 :`z_i=(d_i-a_i*z_(i-1))/(y_i), i=2,3``z_1=d_1/y_1``=8/2=4`
`z_2=(d_2-a_2*z_1)/(y_2)``=(2 - 1 * 4)/(0.5)`
`=(-2)/(0.5)`
`=-4`
`z_3=(d_3-a_3*z_2)/(y_3)``=(8 - 1 * (-4))/(4)`
`=(12)/(4)`
`=3`
Step-3 :`x_i=z_i-(c_i*x_(i+1))/(y_i), i=2,1``x_3=z_3``=3`
`x_2=z_2-(c_2*x_3)/(y_2)``=-4-((-1) * 3)/(0.5)`
`=-4+6`
`=2`
`x_1=z_1-(c_1*x_2)/(y_1)``=4-(3 * 2)/(2)`
`=4-3`
`=1`
Solution is
`x_1=1`
`x_2=2`
`x_3=3`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then