|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Matrix Rank calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 3. `[[3,2,4],[2,0,2],[4,2,3]]` 4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 5. `[[2,3],[4,10]]` 6. `[[5,1],[4,2]]`
|
Example1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` Find rank of matrix ...
`Rank[[8,-6,2],[-6,7,-4],[2,-4,3]]`
Now, reduce this matrix Dividing `R_1` by `8`
`=[[1,-3/4,1/4],[-6,7,-4],[2,-4,3]]`
`R_2 larr R_2 + 6 * R1`
`=[[1,-3/4,1/4],[0,5/2,-5/2],[2,-4,3]]`
`R_3 larr R_3 - 2 * R_1`
`=[[1,-3/4,1/4],[0,5/2,-5/2],[0,-5/2,5/2]]`
Dividing `R_2` by `5/2`
`=[[1,-3/4,1/4],[0,1,-1],[0,-5/2,5/2]]`
`R_1 larr R_1 + 3/4 * R2`
`=[[1,0,-1/2],[0,1,-1],[0,-5/2,5/2]]`
`R_3 larr R_3 + 5/2 * R2`
`=[[1,0,-1/2],[0,1,-1],[0,0,0]]`
The rank of a matrix is the number of non all-zeros rows `:. Rank = 2`
|
|
|
|
|