|
Method and examples
|
Method
|
Find Population Variance, Standard deviation and coefficient of variation for ungrouped data
|
Enter Data
|
|
|
|
Standard deviation using Direct method or Assumed mean method
Method
|
|
- `85,96,76,108,85,80,100,85,70,95`
- `3,13,11,15,5,4,2`
- `3,23,13,11,15,5,4,2`
- `69,66,67,69,64,63,65,68,72`
- `4,14,12,16,6,3,1,2,3`
- `73,70,71,73,68,67,69,72,76,71`
- `10,50,30,20,10,20,70,30`
- `21,23,19,17,12,15,15,17,17,19,23,23,21,23,25,25,21,19,19,19`
- `2,3,7,8,8,5,5,3,7,3,1,8,6,7,4,5,6,3,2,4,3,4,9,8,3`
|
|
Decimal Place =
|
|
log(x)/ln(x) Option for Geometric mean =
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Population Variance, Standard deviation and coefficient of variation for ungrouped data calculator
|
1. 85,96,76,108,85,80,100,85,70,95
2. 3,13,11,11,5,4,2
3. 3,23,13,11,15,3,5,4,2
4. 69,66,67,69,64,63,65,68,72
5. 4,14,12,16,6,3,1,2,3
6. 73,70,71,73,68,67,69,72,76,71
7. 10,50,30,20,10,20,70,30
|
Example1. Calculate Population Variance `(sigma^2)` from the following data `3,13,11,15,5,4,2`Solution:`x` | `x^2` | 3 | 9 | 13 | 169 | 11 | 121 | 15 | 225 | 5 | 25 | 4 | 16 | 2 | 4 | --- | --- | `sum x=53` | `sum x^2=569` |
Mean `bar x=(sum x)/n` `=(3+13+11+15+5+4+2)/7` `=53/7` `=7.5714`
Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n` `=(569 - (53)^2/7)/7` `=(569 - 401.2857)/7` `=167.7143/7` `=23.9592`
|
|
|
|
|
|