1. Calculate Population Variance `(sigma^2)` from the following data
`3,13,11,15,5,4,2`Solution:| `x` | `x^2` |
| 3 | 9 |
| 13 | 169 |
| 11 | 121 |
| 15 | 225 |
| 5 | 25 |
| 4 | 16 |
| 2 | 4 |
| --- | --- |
| `sum x=53` | `sum x^2=569` |
Mean `bar x=(sum x)/n`
`=(3+13+11+15+5+4+2)/7`
`=53/7`
`=7.5714`
Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`
`=(569 - (53)^2/7)/7`
`=(569 - 401.2857)/7`
`=167.7143/7`
`=23.9592`
2. Calculate Population Variance `(sigma^2)` from the following data
`10,50,30,20,10,20,70,30`Solution:| `x` | `x - bar x = x - 30` | `(x - bar x)^2` |
| 10 | -20 | 400 |
| 50 | 20 | 400 |
| 30 | 0 | 0 |
| 20 | -10 | 100 |
| 10 | -20 | 400 |
| 20 | -10 | 100 |
| 70 | 40 | 1600 |
| 30 | 0 | 0 |
| --- | --- | --- |
| `sum x=240` | `sum (x - bar x)=0` | `sum (x - bar x)^2=3000` |
Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
Population Variance `sigma^2 = (sum (x - bar x)^2)/n`
`=3000/8`
`=375`
3. Calculate Population Variance `(sigma^2)` from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:| `x` | `x - bar x = x - 88` | `(x - bar x)^2` |
| 85 | -3 | 9 |
| 96 | 8 | 64 |
| 76 | -12 | 144 |
| 108 | 20 | 400 |
| 85 | -3 | 9 |
| 80 | -8 | 64 |
| 100 | 12 | 144 |
| 85 | -3 | 9 |
| 70 | -18 | 324 |
| 95 | 7 | 49 |
| --- | --- | --- |
| `sum x=880` | `sum (x - bar x)=0` | `sum (x - bar x)^2=1216` |
Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
Population Variance `sigma^2 = (sum (x - bar x)^2)/n`
`=1216/10`
`=121.6`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then