3. Mean deviation about median example
1. Find Mean deviation about MEDIAN from the following data `73,70,71,73,68,67,69,72,76,71`
Solution: Median : Observations in the ascending order are : `67,68,69,70,71,71,72,73,73,76`
Here, `n=10` is even.
`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`
`=(text{Value of } (10/2)^(th) text{ observation} + text{Value of } (10/2 + 1)^(th) text{ observation})/2`
`=(text{Value of }5^(th) text{ observation} + text{Value of }6^(th) text{ observation})/2`
`=(71 + 71)/2`
`=71`
`x` | `|x - M| = |x - 71|` | 73 | 2 | 70 | 1 | 71 | 0 | 73 | 2 | 68 | 3 | 67 | 4 | 69 | 2 | 72 | 1 | 76 | 5 | 71 | 0 | --- | --- | 710 | 20 |
Mean deviation of Median `delta bar x = (sum |x - M|)/n`
`delta bar x = 20/10`
`delta bar x = 2`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=2/71`
`=0.0282`
2. Find Mean deviation about MEDIAN from the following data `69,66,67,69,64,63,65,68,72`
Solution: Median : Observations in the ascending order are : `63,64,65,66,67,68,69,69,72`
Here, `n=9` is odd.
`M=` value of `((n+1)/2)^(th)` observation
`=` value of `((9+1)/2)^(th)` observation
`=` value of `5^(th)` observation
`=67`
`x` | `|x - M| = |x - 67|` | 69 | 2 | 66 | 1 | 67 | 0 | 69 | 2 | 64 | 3 | 63 | 4 | 65 | 2 | 68 | 1 | 72 | 5 | --- | --- | 603 | 20 |
Mean deviation of Median `delta bar x = (sum |x - M|)/n`
`delta bar x = 20/9`
`delta bar x = 2.2222`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=2.2222/67`
`=0.0332`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|