Home > Statistical Methods calculators > Mean deviation about mean for ungrouped data example

Mean deviation about median example for ungrouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example
  3. Mean deviation about median example
  4. Mean deviation about mode example
  5. Mean deviation about mean, median, mode example

2. Mean deviation about mean example
(Previous example)
4. Mean deviation about mode example
(Next example)

3. Mean deviation about median example





1. Find Mean deviation about MEDIAN from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Median :
Observations in the ascending order are :
`67,68,69,70,71,71,72,73,73,76`

Here, `n=10` is even.

`M=(text{Value of } (n/2)^(th) text{ observation} + text{Value of } (n/2 + 1)^(th) text{ observation})/2`

`=(text{Value of } (10/2)^(th) text{ observation} + text{Value of } (10/2 + 1)^(th) text{ observation})/2`

`=(text{Value of }5^(th) text{ observation} + text{Value of }6^(th) text{ observation})/2`

`=(71 + 71)/2`

`=71`

`x``|x - M| = |x - 71|`
732
701
710
732
683
674
692
721
765
710
------
71020


Mean deviation of Median
`delta bar x = (sum |x - M|)/n`

`delta bar x = 20/10`

`delta bar x = 2`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2/71`

`=0.0282`


2. Find Mean deviation about MEDIAN from the following data
`69,66,67,69,64,63,65,68,72`


Solution:
Median :
Observations in the ascending order are :
`63,64,65,66,67,68,69,69,72`

Here, `n=9` is odd.

`M=` value of `((n+1)/2)^(th)` observation

`=` value of `((9+1)/2)^(th)` observation

`=` value of `5^(th)` observation

`=67`

`x``|x - M| = |x - 67|`
692
661
670
692
643
634
652
681
725
------
60320


Mean deviation of Median
`delta bar x = (sum |x - M|)/n`

`delta bar x = 20/9`

`delta bar x = 2.2222`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2.2222/67`

`=0.0332`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean deviation about mean example
(Previous example)
4. Mean deviation about mode example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.