Home > Statistical Methods calculators > Spearman's Rank Correlation Coefficient (RHO) example

Spearman's Rank Correlation Coefficient (RHO) example ( Enter your problem )
  1. Rank correlation coefficient for marks given by 2 judge example
  2. Rank correlation coefficient for rank given by 2 judge example
  3. Rank correlation coefficient for rank given by 3 judge example

2. Rank correlation coefficient for rank given by 2 judge example
(Previous example)

3. Rank correlation coefficient for rank given by 3 judge example





Formula
1. `r = 1 - (6 * sum d^2)/(n(n^2 - 1))`

Examples
3. Calculate Spearman's Rank Correlation Coefficient from the following Rank
X16510324978
Y35847102169
Y64981231057


Solution:
Rank Correlation of X and Y
`Rx``Ry``d=Rx-Ry``d^2`
13-24
6511
58-39
104636
37-416
210-864
4224
91864
7611
89-11
------------
------200


`r = 1 - (6 * sum d^2)/(n(n^2 - 1))`

`=1 - (6 * 200)/(10 * (10^2 - 1))`

`=1 - (6 * 200)/(10 * (100 - 1))`

`=1 - 1200/990`

`=1 - 1.2121`

`=-0.2121`


Rank Correlation of Y and Z
`Rx``Ry``d=Rx-Ry``d^2`
36-39
5411
89-11
48-416
71636
102864
23-11
110-981
6511
9724
------------
------214


`r = 1 - (6 * sum d^2)/(n(n^2 - 1))`

`=1 - (6 * 214)/(10 * (10^2 - 1))`

`=1 - (6 * 214)/(10 * (100 - 1))`

`=1 - 1284/990`

`=1 - 1.297`

`=-0.297`


Rank Correlation of Z and X
`Rx``Ry``d=Rx-Ry``d^2`
61525
46-24
95416
810-24
13-24
2200
34-11
10911
57-24
78-11
------------
------60


`r = 1 - (6 * sum d^2)/(n(n^2 - 1))`

`=1 - (6 * 60)/(10 * (10^2 - 1))`

`=1 - (6 * 60)/(10 * (100 - 1))`

`=1 - 360/990`

`=1 - 0.3636`

`=0.6364`


`r_1 = -0.2121, r_2 = -0.297, r_3 = 0.6364`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Rank correlation coefficient for rank given by 2 judge example
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.