`f(x)=2x^3+x^2-4` and `h = 0.5`, estimate `f^'(2.5) and f^('')(2.5)`
using Five point Forward difference, Backward difference, Central difference formula numerical differentiation
Also find exact value of f', f'' and error for each estimation
Solution:
Equation is `f(x) = 2x^3+x^2-4`.
`:. f^'(x) = 6x^2+2x`
`:. f^('')(x) = 12x+2`
The value of table for `x` and `y`
x | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
---|
y | -3.5 | -1 | 5 | 16 | 33.5 | 59 | 94 | 140 | 198.5 |
---|
Five-point FDF (Forward difference formula)
`f^'(x)=1/(12h)[-25f(x)+48f(x+h)-36f(x+2h)+16f(x+3h)-3f(x+4h)]`
`f^'(2.5)=1/(12*0.5)[-25f(2.5)+48f(2.5+0.5)-36f(2.5+2*0.5)+16f(2.5+3*0.5)-3f(2.5+4*0.5)]`
`f^'(2.5)=1/(6)[-25f(2.5)+48f(3)-36f(3.5)+16f(4)-3f(4.5)]`
`f^'(2.5)=1/(6)[-25(33.5)+48(59)-36(94)+16(140)-3(198.5)]`
`f^'(2.5)=42.5`
Absolute Error:`|"exact value of " f^'(2.5)-(42.5)|=|42.5 -42.5|=0`
Five-point CDF (Central difference formula)
`f^'(x)=1/(12h)[f(x-2h)-8f(x-h)+8f(x+h)-f(x+2h)]`
`f^'(2.5)=1/(12*0.5)[f(2.5-2*0.5)-8f(2.5-0.5)+8f(2.5+0.5)-f(2.5+2*0.5)]`
`f^'(2.5)=1/6[f(1.5)-8f(2)+8f(3)-f(3.5)]`
`f^'(2.5)=1/6[5-8(16)+8(59)-94]`
`f^'(2.5)=42.5`
Absolute Error:`|"exact value of " f^'(2.5)-(42.5)|=|42.5 -42.5|=0`
Five-point CDF (Central difference formula) for second derivatives
`f^('')(x)=1/(12h^2)[-f(x-2h)+16f(x-h)-30f(x)+16f(x+h)-f(x+2h)]`
`f^('')(2.5)=1/(12*(0.5)^2)[-f(2.5-2*0.5)+16f(2.5-0.5)-30f(2.5)+16f(2.5+0.5)-f(2.5+2*0.5)]`
`f^('')(2.5)=1/3[-f(1.5)+16f(2)-30f(2.5)+16f(3)-f(3.5)]`
`f^('')(2.5)=1/3[-5+16(16)-30(33.5)+16(59)-94]`
`f^('')(2.5)=32`
Absolute Error:`|"exact value of " f^('')(2.5)-(32)|=|32 -32|=0`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then