Home > Numerical methods calculators > Three point Forward difference, Backward difference, Central difference formula numerical differentiation example

2. Three point Forward difference, Backward difference, Central difference formula numerical differentiation example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (`f(x)=cosx`)
  4. Example-4 (`f(x)=2x^3+x^2-4`)
  5. Example-5 (`f(x)=xlnx`)
  6. Example-6 (`f(x)=sinx`)
Other related methods
  1. Two point Forward, Backward, Central difference formula
  2. Three point Forward, Backward, Central difference formula
  3. Four point Forward, Backward, Central difference formula
  4. Five point Forward, Central difference formula

1. Two point Forward, Backward, Central difference formula
(Previous method)
2. Example-2 (table data)
(Next example)

1. Formula & Example-1 (table data)





Formula
1. Three-point FDF (Forward difference formula)
`f^'(x)=1/(2h)[-3f(x)+4f(x+h)-f(x+2h)]`
2. Three-point BDF (Backward difference formula)
`f^'(x)=1/(2h)[f(x-2h)-4f(x-h)+3f(x)]`
3. Three-point CDF (Central difference formula)
`f^'(x)=(f(x+h)-f(x-h))/(2h)`
4. Three-point FDF (Forward difference formula) for second derivatives
`f^('')(x)=(f(x)-2f(x+h)+f(x+2h))/(h^2)`
5. Three-point BDF (Backward difference formula) for second derivatives
`f^('')(x)=(f(x-2h)-2f(x-h)+f(x))/(h^2)`
6. Three-point CDF (Central difference formula) for second derivatives
`f^('')(x)=(f(x-h)-2f(x)+f(x+h))/(h^2)`

Examples
1. Using Three point Forward difference, Backward difference, Central difference formula numerical differentiation to find solution
x11.051.101.151.201.251.30
f(x)11.024701.048811.072381.095451.118031.14018

`f^'(1.10) and f^('')(1.10)`


Solution:
The value of table for `x` and `y`

x11.051.11.151.21.251.3
y11.02471.04881.07241.09541.1181.1402

Three-point FDF (Forward difference formula)
`f^'(x)=1/(2h)[-3f(x)+4f(x+h)-f(x+2h)]`

`f^'(1.10)=1/(2*0.05)[-3f(1.10)+4f(1.10+0.05)-f(1.10+2*0.05)]`

`f^'(1.10)=1/0.1[-3f(1.10)+4f(1.15)-f(1.2)]`

`f^'(1.10)=1/0.1[-3(1.0488)+4(1.0724)-1.0954]`

`f^'(1.10)=0.4764`



Three-point BDF (Backward difference formula)
`f^'(x)=1/(2h)[f(x-2h)-4f(x-h)+3f(x)]`

`f^'(1.10)=1/(2*0.05)[f(1.10-2*0.05)-4f(1.10-0.05)+3f(1.10)]`

`f^'(1.10)=1/0.1[f(1)-4f(1.05)+3f(1.10)]`

`f^'(1.10)=1/0.1[1-4(1.0247)+3(1.0488)]`

`f^'(1.10)=0.4763`



Three-point CDF (Central difference formula)
`f^'(x)=(f(x+h)-f(x-h))/(2h)`

`f^'(1.10)=(f(1.10+0.05)-f(1.10-0.05))/(2*0.05)`

`f^'(1.10)=(f(1.15)-f(1.05))/0.1`

`f^'(1.10)=(1.0724-1.0247)/0.1`

`f^'(1.10)=0.4768`



Three-point FDF (Forward difference formula) for second derivatives
`f^('')(x)=(f(x)-2f(x+h)+f(x+2h))/(h^2)`

`f^('')(1.10)=(f(1.10)-2f(1.10+0.05)+f(1.10+2*0.05))/((0.05)^2)`

`f^('')(1.10)=(f(1.10)-2f(1.15)+f(1.2))/(0.0025)`

`f^('')(1.10)=(1.0488-2(1.0724)+1.0954)/(0.0025)`

`f^('')(1.10)=-0.2`



Three-point BDF (Backward difference formula) for second derivatives
`f^('')(x)=(f(x-2h)-2f(x-h)+f(x))/(h^2)`

`f^('')(1.10)=(f(1.10-2*0.05)-2f(1.10-0.05)+f(1.10))/((0.05)^2)`

`f^('')(1.10)=(f(1)-2f(1.05)+f(1.10))/(0.0025)`

`f^('')(1.10)=(1-2(1.0247)+1.0488)/(0.0025)`

`f^('')(1.10)=-0.236`



Three-point CDF (Central difference formula) for second derivatives
`f^('')(x)=(f(x-h)-2f(x)+f(x+h))/(h^2)`

`f^('')(1.10)=(f(1.10-0.05)-2f(1.10)+f(1.10+0.05))/(0.05)^2`

`f^('')(1.10)=(f(1.05)-2f(1.10)+f(1.15))/(0.0025)`

`f^('')(1.10)=(1.0247-2(1.0488)+1.0724)/(0.0025)`

`f^('')(1.10)=-0.216`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Two point Forward, Backward, Central difference formula
(Previous method)
2. Example-2 (table data)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.