Home > Statistical Methods calculators > One-way ANOVA example

1. One-way ANOVA method example ( Enter your problem )
  1. Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. One-way ANOVA method
  2. Two-way ANOVA method

2. Example-2
(Previous example)
2. Two-way ANOVA method
(Next method)

3. Example-3





Solve using One-way ANOVA method
ObservationABC
1253124
2303930
3363828
4384225
5313528


Solution:
`A``B``C`
253124
303930
363828
384225
313528
`sum A=160``sum B=185``sum C=135`


`A^2``B^2``C^2`
625961576
9001521900
12961444784
14441764625
9611225784
`sum A^2=5226``sum B^2=6915``sum C^2=3669`


Data table
Group`A``B``C`Total
N`n_1=5``n_2=5``n_3=5``n=15`
`sum x_i``T_1=sum x_1=160``T_2=sum x_2=185``T_3=sum x_3=135``sum x=480`
`sum x_(i)^2``sum x_1^2=5226``sum x_2^2=6915``sum x_3^2=3669``sum x^2=15810`
Mean `bar x_i``bar x_1=32``bar x_2=37``bar x_3=27`Overall `bar x=32`
Std Dev `S_i``S_1=5.1478``S_2=4.1833``S_3=2.4495`


Let k = the number of different samples = 3
`n=n_1+n_2+n_3=5+5+5=15`

Overall `bar x=480/15=32`

`sum x=T_1+T_2+T_3=160+185+135=480 ->(1)`

`(sum x)^2/n=480^2/15=15360 ->(2)`

`sum T_i^2/n_i=(160^2/5+185^2/5+135^2/5)=15610 ->(3)`

`sum x^2=sum x_(1)^2+sum x_(2)^2+sum x_(3)^2=5226+6915+3669=15810 ->(4)`



ANOVA:
Step-1 : sum of squares between samples
`"SSB"= (sum T_i^2/n_i) - (sum x)^2/n = (3)-(2)`

`=15610-15360`

`=250`

Or
`"SSB"=sum n_j * (bar x_j - bar x)^2`

`=5xx(32-32)^2+5xx(37-32)^2+5xx(27-32)^2`

`=250`

Step-2 : sum of squares within samples
`"SSW"= sum x^2 - (sum T_i^2/n_i) = (4)-(3)`

`=15810-15610`

`=200`

Step-3 : Total sum of squares
`"SST"="SSB"+"SSW"`

`=250+200`

`=450`

Step-4 : variance between samples
`"MSB"=("SSB")/(k-1)`

`=250/(2)`

`=125`

Step-5 : variance within samples
`"MSW"=("SSW")/(n-k)`

`=200/(15-3)`

`=200/(12)`

`=16.6667`

Step-6 : test statistic F for one way ANOVA test
`F=("MSB")/("MSW")`

`=125/(16.6667)`

`=7.5`

the degree of freedom between samples
`k-1=2`

Now, degree of freedom within samples
`n-k=15-3=12`

ANOVA table
Source of VariationSums of Squares
SS
Degrees of freedom
DF
Mean Squares
MS
F`p`-value
Between samplesSSB = 250`k-1` = 2MSB = 1257.50.0077
Within samplesSSW = 200`n-k` = 12MSW = 16.6667
TotalSST = 450`n-1` = 14


`H_0` : There is no significant differentiating between samples

`H_1` : There is significant differentiating between samples

`F(2,12)` at `0.05` level of significance

`=3.8853`

As calculated `F=7.5 > 3.8853`

So, `H_0` is rejected, Hence there is significant differentiating between samples


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
2. Two-way ANOVA method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.