Home > Algebra calculators > Future value of Annuity Due example

4. Future value of Annuity Due example ( Enter your problem )
  1. Find Future value (FV) Example
  2. Find Regular Deposit (C) Example
  3. Find Interest Rate (i) Example
  4. Find Time (n) Example
Other related methods
  1. Future value using Simple Interest
  2. Future value using Compound Interest
  3. Future value of Annuity
  4. Future value of Annuity Due
  5. Present value using Simple Interest
  6. Present value using Compound Interest
  7. Present value of Annuity
  8. Present value of Annuity Due
  9. Contineous Compounding

2. Find Regular Deposit (C) Example
(Previous example)
4. Find Time (n) Example
(Next example)

3. Find Interest Rate (i) Example





1. Find Interest Rate i = ?
Regular Deposit
(PMT Amount) C = 1000, Time n = 5 Year, Future value FV = 6715.61,
Deposit Frequency = at the beginning (Annuity Due) of every Year (1/year)
for Future value of Annuity Due method


Solution:
`C=1000` (Cash flow per year)

`n=5` years (Number of periods)

`FV=6715.61` (Future value)

Now, Future value (Annuity Due) formula is
`FV_("Annuity Due")=C*[((1+i)^n-1)/(i)]*(1+i)`

`:.6715.61=1000*[((1+i)^5-1)/(i)]*(1+i)`

`:.(6715.61)/(1000)=[((1+i)^5-1)/(i)]*(1+i)`

`:.[((1+i)^5-1)/(i)]*(1+i)=6.72`

Now, find one solution using Newton Raphson method

Here `((1+x)^5-1)*(1+x)=6.72x`

`:.((1+x)^5-1)(1+x)-6.72x=0`

Let `f(x) = ((1+x)^5-1)(1+x)-6.72x`

`d/(dx)(((1+x)^5-1)(1+x)-6.72x)=5*(1+x)^5+((1+x)^5-1)-6.72`


`d/(dx)(((1+x)^5-1)(1+x)-6.72x)`

`=d/(dx)(((1+x)^5-1)(1+x))-d/(dx)(6.72x)`

`d/(dx)(((1+x)^5-1)(1+x))=5*(1+x)^5+((1+x)^5-1)`
`d/(dx)(((1+x)^5-1)(1+x))`

`=(d/(dx)((1+x)^5-1))(1+x)+((1+x)^5-1)(d/(dx)(1+x))`

`d/(dx)((1+x)^5-1)=5*(1+x)^4`
`d/(dx)((1+x)^5-1)`

`=d/(dx)((1+x)^5)-d/(dx)(1)`

`d/(dx)((1+x)^5)=5*(1+x)^4`
`d/(dx)((1+x)^5)`

`=5*(1+x)^4*d/(dx)(1+x)`

`d/(dx)(1+x)=1`
`d/(dx)(1+x)`

`=d/(dx)(1)+d/(dx)(x)`

`=0+1`

`=1`


`=5*(1+x)^4*1`

`=5*(1+x)^4`


`=5*(1+x)^4-0`

`=5*(1+x)^4`


`d/(dx)(1+x)=1`
`d/(dx)(1+x)`

`=d/(dx)(1)+d/(dx)(x)`

`=0+1`

`=1`


`=(5*(1+x)^4)(1+x)+((1+x)^5-1)*1`

`=5*(1+x)^5+((1+x)^5-1)`


`=(5*(1+x)^5+((1+x)^5-1))-6.72`

`=5*(1+x)^5+((1+x)^5-1)-6.72`


`:. f'(x) = 5*(1+x)^5+((1+x)^5-1)-6.72`

`x_0 = 0.1`


`1^(st)` iteration :

`f(x_0)=f(0.1)=((1+0.1)^5-1)(1+0.1)-6.72*0.1=-0.000439`

`f'(x_0)=f'(0.1)=5*(1+0.1)^5+((1+0.1)^5-1)-6.72=1.94306`

`x_1 = x_0 - f(x_0)/(f'(x_0))`

`x_1=0.1 - (-0.000439)/(1.94306)`

`x_1=0.100226`


Approximate root of the equation `((1+x)^5-1)(1+x)-6.72x=0` using Newton Raphson method is `0.100226` (After 1 iterations)

`n``x_0``f(x_0)``f'(x_0)``x_1`Update
10.1-0.0004391.943060.100226`x_0 = x_1`



`:.i=0.100226`

`:.i=10.02 %` per year
2. Find Interest Rate i = ?
Regular Deposit
(PMT Amount) C = 5000, Time n = 3 Year, Future value FV = 18205,
Deposit Frequency = at the beginning (Annuity Due) of every Year (1/year)
for Future value of Annuity Due method


Solution:
`C=5000` (Cash flow per year)

`n=3` years (Number of periods)

`FV=18205` (Future value)

Now, Future value (Annuity Due) formula is
`FV_("Annuity Due")=C*[((1+i)^n-1)/(i)]*(1+i)`

`:.18205=5000*[((1+i)^3-1)/(i)]*(1+i)`

`:.(18205)/(5000)=[((1+i)^3-1)/(i)]*(1+i)`

`:.[((1+i)^3-1)/(i)]*(1+i)=3.64`

Now, find one solution using Newton Raphson method

Here `((1+x)^3-1)*(1+x)=3.64x`

`:.((1+x)^3-1)(1+x)-3.64x=0`

Let `f(x) = ((1+x)^3-1)(1+x)-3.64x`

`d/(dx)(((1+x)^3-1)(1+x)-3.64x)=3*(1+x)^3+((1+x)^3-1)-3.64`


`d/(dx)(((1+x)^3-1)(1+x)-3.64x)`

`=d/(dx)(((1+x)^3-1)(1+x))-d/(dx)(3.64x)`

`d/(dx)(((1+x)^3-1)(1+x))=3*(1+x)^3+((1+x)^3-1)`
`d/(dx)(((1+x)^3-1)(1+x))`

`=(d/(dx)((1+x)^3-1))(1+x)+((1+x)^3-1)(d/(dx)(1+x))`

`d/(dx)((1+x)^3-1)=3*(1+x)^2`
`d/(dx)((1+x)^3-1)`

`=d/(dx)((1+x)^3)-d/(dx)(1)`

`d/(dx)((1+x)^3)=3*(1+x)^2`
`d/(dx)((1+x)^3)`

`=3*(1+x)^2*d/(dx)(1+x)`

`d/(dx)(1+x)=1`
`d/(dx)(1+x)`

`=d/(dx)(1)+d/(dx)(x)`

`=0+1`

`=1`


`=3*(1+x)^2*1`

`=3*(1+x)^2`


`=3*(1+x)^2-0`

`=3*(1+x)^2`


`d/(dx)(1+x)=1`
`d/(dx)(1+x)`

`=d/(dx)(1)+d/(dx)(x)`

`=0+1`

`=1`


`=(3*(1+x)^2)(1+x)+((1+x)^3-1)*1`

`=3*(1+x)^3+((1+x)^3-1)`


`=(3*(1+x)^3+((1+x)^3-1))-3.64`

`=3*(1+x)^3+((1+x)^3-1)-3.64`


`:. f'(x) = 3*(1+x)^3+((1+x)^3-1)-3.64`

`x_0 = 0.1`


`1^(st)` iteration :

`f(x_0)=f(0.1)=((1+0.1)^3-1)(1+0.1)-3.64*0.1=0.0001`

`f'(x_0)=f'(0.1)=3*(1+0.1)^3+((1+0.1)^3-1)-3.64=0.684`

`x_1 = x_0 - f(x_0)/(f'(x_0))`

`x_1=0.1 - (0.0001)/(0.684)`

`x_1=0.099854`


Approximate root of the equation `((1+x)^3-1)(1+x)-3.64x=0` using Newton Raphson method is `0.099854` (After 1 iterations)

`n``x_0``f(x_0)``f'(x_0)``x_1`Update
10.10.00010.6840.099854`x_0 = x_1`



`:.i=0.099854`

`:.i=9.99 %` per year


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Find Regular Deposit (C) Example
(Previous example)
4. Find Time (n) Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.