Home > Algebra calculators > Parabola Directrix example

8. Directrix of a function example ( Enter your problem )
  1. `y=x^2+3x-4` Example-1
  2. `y=(x+2)^2-9` Example-2
  3. `y=3x^2+6x-1` Example-3
  4. `y=3(x+1)^2-4` Example-4
Other related methods
  1. Domain of a function
  2. Range of a function
  3. Inverse of a function
  4. Properties of a function
  5. Parabola Vertex of a function
  6. Parabola focus
  7. axis symmetry of a parabola
  8. Parabola Directrix
  9. Intercept of a function
  10. Parity of a function
  11. Asymptotes of a function

1. `y=x^2+3x-4` Example-1
(Previous example)
3. `y=3x^2+6x-1` Example-3
(Next example)

2. `y=(x+2)^2-9` Example-2





2. `y=(x+2)^2-9`, find Directrix of a function

Solution:
`y=(x+2)^2-9`

1. Vertex :
`:. y=1(x-(-2))^2+(-9)`

Now compare with `y=a(x-h)^2+k`, we get

`a=1,h=-2,k=-9`

Vertex `=(h,k)=(-2,-9)`

If `a<0` then the vertex is a maximum value

If `a>0` then the vertex is a minimum value

Here `a=1>0`

So minimum Vertex = `(h,k)=(-2,-9)`

2. Focus :
Find `p`, distance from the vertex to a focus of the parabola

`p=1/(4a)=1/(4*1)=1/4`

Focus `=(h,k+p)=(-2,-9+1/4)=(-2,-35/4)`

3. Directrix :
Directrix `y=k-p=-9-1/4=-37/4`

4. Graph :
some extra points to plot the graph
`y=f(x)=(x+2)^2-9`

`f(-6)=(-6+2)^2-9=16-9=7`

`f(-5)=(-5+2)^2-9=9-9=0`

`f(-4)=(-4+2)^2-9=4-9=-5`

`f(-3)=(-3+2)^2-9=1-9=-8`

`f(-2)=(-2+2)^2-9=0-9=-9`

`f(-1)=(-1+2)^2-9=1-9=-8`

`f(0)=(0+2)^2-9=4-9=-5`

`f(1)=(1+2)^2-9=9-9=0`

`f(2)=(2+2)^2-9=16-9=7`

graph



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. `y=x^2+3x-4` Example-1
(Previous example)
3. `y=3x^2+6x-1` Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.