Home > Algebra calculators > Parabola Vertex form example

5. Vertex of a function example ( Enter your problem )
  1. y=x2+3x-4 Example-1
  2. y=(x+2)2-9 Example-2
  3. y=3x2+6x-1 Example-3
  4. y=3(x+1)2-4 Example-4
Other related methods
  1. Domain of a function
  2. Range of a function
  3. Inverse of a function
  4. Properties of a function
  5. Parabola Vertex of a function
  6. Parabola focus
  7. axis symmetry of a parabola
  8. Parabola Directrix
  9. Intercept of a function
  10. Parity of a function
  11. Asymptotes of a function

1. y=x2+3x-4 Example-1
(Previous example)
3. y=3x2+6x-1 Example-3
(Next example)

2. y=(x+2)2-9 Example-2





y=(x+2)2-9, find Vertex of a function

Solution:
y=(x+2)2-9

1. Vertex :
:. y=1(x-(-2))^2+(-9)

Now compare with y=a(x-h)^2+k, we get

a=1,h=-2,k=-9

Vertex =(h,k)=(-2,-9)

If a<0 then the vertex is a maximum value

If a>0 then the vertex is a minimum value

Here a=1>0

So minimum Vertex = (h,k)=(-2,-9)

2. Graph :
some extra points to plot the graph
y=f(x)=(x+2)^2-9

f(-6)=(-6+2)^2-9=16-9=7

f(-5)=(-5+2)^2-9=9-9=0

f(-4)=(-4+2)^2-9=4-9=-5

f(-3)=(-3+2)^2-9=1-9=-8

f(-2)=(-2+2)^2-9=0-9=-9

f(-1)=(-1+2)^2-9=1-9=-8

f(0)=(0+2)^2-9=4-9=-5

f(1)=(1+2)^2-9=9-9=0

f(2)=(2+2)^2-9=16-9=7

graph



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. y=x^2+3x-4 Example-1
(Previous example)
3. y=3x^2+6x-1 Example-3
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.