y=(x+2)2-9, find Vertex of a functionSolution:y=(x+2)2-91. Vertex : :. y=1(x-(-2))^2+(-9)Now compare with
y=a(x-h)^2+k, we get
a=1,h=-2,k=-9Vertex
=(h,k)=(-2,-9)If
a<0 then the vertex is a maximum value
If
a>0 then the vertex is a minimum value
Here
a=1>0So minimum Vertex =
(h,k)=(-2,-9)2. Graph : some extra points to plot the graph
y=f(x)=(x+2)^2-9f(-6)=(-6+2)^2-9=16-9=7f(-5)=(-5+2)^2-9=9-9=0f(-4)=(-4+2)^2-9=4-9=-5f(-3)=(-3+2)^2-9=1-9=-8f(-2)=(-2+2)^2-9=0-9=-9f(-1)=(-1+2)^2-9=1-9=-8f(0)=(0+2)^2-9=4-9=-5f(1)=(1+2)^2-9=9-9=0f(2)=(2+2)^2-9=16-9=7graph

This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then