1. Karnaugh Map method (Kmap) example
( Enter your problem )
|
- Example-1 : Minterm = 0,1,2,5,6,7,8,9,10,14
- Example-2 : Minterm = 2,6,8,9,10,11,14,15
- Example-3 : Minterm = 2,3,5,7,8,10,12,13,15
- Example-4 : Minterm = 4,8,10,11,12,15
|
Other related methods
- Karnaugh Map method (Kmap)
- Quine-McCluskey method
|
|
1. Example-1 : Minterm = 0,1,2,5,6,7,8,9,10,14
1. Minterm = 0,1,2,5,6,7,8,9,10,14 DontCare = Variable = a,b,c,d using Karnaugh Map (Kmap solver)
Solution: Minterm = `sum m(0,1,2,5,6,7,8,9,10,14)`
Variable = a,b,c,d
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 1 0 | 1 1 | 0 3 | 1 2 | 01 | 0 4 | 1 5 | 1 7 | 1 6 | 11 | 0 12 | 0 13 | 0 15 | 1 14 | 10 | 1 8 | 1 9 | 0 11 | 1 10 |
Group-1 : 4 Cell Grouping (0,1,8,9)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 1 0 | 1 1 | 0 3 | 1 2 | 01 | 0 4 | 1 5 | 1 7 | 1 6 | 11 | 0 12 | 0 13 | 0 15 | 1 14 | 10 | 1 8 | 1 9 | 0 11 | 1 10 |
Positions = 0,1,8,9 Simplified Expression = b'c'
Group-2 : 4 Cell Grouping (2,6,10,14)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 1 0 | 1 1 | 0 3 | 1 2 | 01 | 0 4 | 1 5 | 1 7 | 1 6 | 11 | 0 12 | 0 13 | 0 15 | 1 14 | 10 | 1 8 | 1 9 | 0 11 | 1 10 |
Positions = 2,6,10,14 Simplified Expression = b'c' + cd'
Group-3 : 2 Cell Grouping (5,7)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 1 0 | 1 1 | 0 3 | 1 2 | 01 | 0 4 | 1 5 | 1 7 | 1 6 | 11 | 0 12 | 0 13 | 0 15 | 1 14 | 10 | 1 8 | 1 9 | 0 11 | 1 10 |
Positions = 5,7 Simplified Expression = b'c' + cd' + a'bd
Final Expression = b'c' + cd' + a'bd
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 1 0 | 1 1 | 0 3 | 1 2 | 01 | 0 4 | 1 5 | 1 7 | 1 6 | 11 | 0 12 | 0 13 | 0 15 | 1 14 | 10 | 1 8 | 1 9 | 0 11 | 1 10 |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|