Step-1 :Make pair of digits of given number starting with digit at one's place. Put bar on each pair.
Step-2 :Now leftmost digits is 1. Now find the largest number whose cube is `<=` 1
It is 1, whose cube is 1. Write 1 as quotient and subtract 1
Step-3 :Now, we have to bring down the next three digits 001
By trial and error, next quotient digit is 0
`300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300`
So our new divisor is 300
| | 1 | | | |
| 1 | 1 | 001 | | |
| 1 | | | |
| 300 | | 1 | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
Step-4 :Now multiply 300 by 0 (`300 xx 0=0`) and subtract it.
| | 1 | 0 | | |
| 1 | 1 | 001 | | |
| 1 | | | |
| 300 | | 1 | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | |
| | 1 | | |
Step-5 :Now, we have to bring down the next three digits 000
By trial and error, next quotient digit is 0
`300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000`
So our new divisor is 30000
| | 1 | 0 | . | | |
| 1 | 1 | 001 | .000 | | |
| 1 | | | | |
| 300 | | 1 | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | |
| 30000 | | 1 | 000 | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
Step-6 :Now multiply 30000 by 0 (`30000 xx 0=0`) and subtract it.
| | 1 | 0 | .0 | | |
| 1 | 1 | 001 | .000 | | |
| 1 | | | | |
| 300 | | 1 | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | |
| 30000 | | 1 | 000 | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | |
| | 1 | 000 | | |
Step-7 :Now, we have to bring down the next three digits 000
By trial and error, next quotient digit is 0
`300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000`
So our new divisor is 3000000
| | 1 | 0 | .0 | | | |
| 1 | 1 | 001 | .000 | 000 | | |
| 1 | | | | | |
| 300 | | 1 | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | |
| 30000 | | 1 | 000 | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | |
| 3000000 | | 1 | 000 | 000 | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
Step-8 :Now multiply 3000000 by 0 (`3000000 xx 0=0`) and subtract it.
| | 1 | 0 | .0 | 0 | | |
| 1 | 1 | 001 | .000 | 000 | | |
| 1 | | | | | |
| 300 | | 1 | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | |
| 30000 | | 1 | 000 | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | |
| 3000000 | | 1 | 000 | 000 | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
| | | | 0 | | |
| | 1 | 000 | 000 | | |
Step-9 :Now, we have to bring down the next three digits 000
By trial and error, next quotient digit is 3
`300 xx 1000^2 + 30 xx 1000 xx 3 + 3^2=300000000 + 90000 + 9=300090009`
So our new divisor is 300090009
| | 1 | 0 | .0 | 0 | | | |
| 1 | 1 | 001 | .000 | 000 | 000 | | |
| 1 | | | | | | |
| 300 | | 1 | | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | | |
| 30000 | | 1 | 000 | | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | | |
| 3000000 | | 1 | 000 | 000 | | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
| | | | 0 | | | |
| 300090009 | | 1 | 000 | 000 | 000 | | `300 xx 1000^2 + 30 xx 1000 xx 3 + 3^2=300000000 + 90000 + 9=300090009` |
Step-10 :Now multiply 300090009 by 3 (`300090009 xx 3=900270027`) and subtract it.
| | 1 | 0 | .0 | 0 | 3 | | |
| 1 | 1 | 001 | .000 | 000 | 000 | | |
| 1 | | | | | | |
| 300 | | 1 | | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | | |
| 30000 | | 1 | 000 | | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | | |
| 3000000 | | 1 | 000 | 000 | | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
| | | | 0 | | | |
| 300090009 | | 1 | 000 | 000 | 000 | | `300 xx 1000^2 + 30 xx 1000 xx 3 + 3^2=300000000 + 90000 + 9=300090009` |
| | | 900 | 270 | 027 | | |
| | | 99 | 729 | 973 | | |
Step-11 :Now, we have to bring down the next three digits 000
By trial and error, next quotient digit is 3
`300 xx 10003^2 + 30 xx 10003 xx 3 + 3^2=30018002700 + 900270 + 9=30018902979`
So our new divisor is 30018902979
| | 1 | 0 | .0 | 0 | 3 | | | |
| 1 | 1 | 001 | .000 | 000 | 000 | 000 | | |
| 1 | | | | | | | |
| 300 | | 1 | | | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | | | |
| 30000 | | 1 | 000 | | | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | | | |
| 3000000 | | 1 | 000 | 000 | | | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
| | | | 0 | | | | |
| 300090009 | | 1 | 000 | 000 | 000 | | | `300 xx 1000^2 + 30 xx 1000 xx 3 + 3^2=300000000 + 90000 + 9=300090009` |
| | | 900 | 270 | 027 | | | |
| 30018902979 | | | 99 | 729 | 973 | 000 | | `300 xx 10003^2 + 30 xx 10003 xx 3 + 3^2=30018002700 + 900270 + 9=30018902979` |
Step-12 :Now multiply 30018902979 by 3 (`30018902979 xx 3=90056708937`) and subtract it.
| | 1 | 0 | .0 | 0 | 3 | 3 | | |
| 1 | 1 | 001 | .000 | 000 | 000 | 000 | | |
| 1 | | | | | | | |
| 300 | | 1 | | | | | | `300 xx 1^2 + 30 xx 1 xx 0 + 0^2=300 + 0 + 0=300` |
| | 0 | | | | | | |
| 30000 | | 1 | 000 | | | | | `300 xx 10^2 + 30 xx 10 xx 0 + 0^2=30000 + 0 + 0=30000` |
| | | 0 | | | | | |
| 3000000 | | 1 | 000 | 000 | | | | `300 xx 100^2 + 30 xx 100 xx 0 + 0^2=3000000 + 0 + 0=3000000` |
| | | | 0 | | | | |
| 300090009 | | 1 | 000 | 000 | 000 | | | `300 xx 1000^2 + 30 xx 1000 xx 3 + 3^2=300000000 + 90000 + 9=300090009` |
| | | 900 | 270 | 027 | | | |
| 30018902979 | | | 99 | 729 | 973 | 000 | | `300 xx 10003^2 + 30 xx 10003 xx 3 + 3^2=30018002700 + 900270 + 9=30018902979` |
| | | 90 | 056 | 708 | 937 | | |
| | | 9 | 673 | 264 | 063 | | |