Home > Statistical Methods calculators > Sample Variance, Standard deviation and coefficient of variation for mixed data example

Sample Variance, Standard deviation and coefficient of variation for mixed data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Sample Variance Example
  3. Sample Standard deviation Example
  4. Sample coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Population Variance, Standard deviation and coefficient of variation
  3. Sample Variance, Standard deviation and coefficient of variation

2. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum fx)/n`
2. Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`
3. Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
4. Coefficient of Variation (Sample) `=S / bar x * 100 %`

Examples
1. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following mixed data
ClassFrequency
13
24
510
6 - 1023
10 - 2020
20 - 3020
30 - 5015
50 - 703
70 - 1002


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
13 1 `1=1` 3 `3=3xx1`
`(4)=(2)xx(3)`
 3 `3=3xx1`
`(5)=(4)xx(3)`
24 2 `2=2` 8 `8=4xx2`
`(4)=(2)xx(3)`
 16 `16=8xx2`
`(5)=(4)xx(3)`
510 5 `5=5` 50 `50=10xx5`
`(4)=(2)xx(3)`
 250 `250=50xx5`
`(5)=(4)xx(3)`
6 - 1023 8 `8=(6+10)/2` 184 `184=23xx8`
`(4)=(2)xx(3)`
 1472 `1472=184xx8`
`(5)=(4)xx(3)`
10 - 2020 15 `15=(10+20)/2` 300 `300=20xx15`
`(4)=(2)xx(3)`
 4500 `4500=300xx15`
`(5)=(4)xx(3)`
20 - 3020 25 `25=(20+30)/2` 500 `500=20xx25`
`(4)=(2)xx(3)`
 12500 `12500=500xx25`
`(5)=(4)xx(3)`
30 - 5015 40 `40=(30+50)/2` 600 `600=15xx40`
`(4)=(2)xx(3)`
 24000 `24000=600xx40`
`(5)=(4)xx(3)`
50 - 703 60 `60=(50+70)/2` 180 `180=3xx60`
`(4)=(2)xx(3)`
 10800 `10800=180xx60`
`(5)=(4)xx(3)`
70 - 1002 85 `85=(70+100)/2` 170 `170=2xx85`
`(4)=(2)xx(3)`
 14450 `14450=170xx85`
`(5)=(4)xx(3)`
---------------
`n = 100`-----`sum f*x=1995``sum f*x^2=67991`


Mean `bar x = (sum fx)/n`

`=1995/100`

`=19.95`



Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`

`=(67991 - (1995)^2/100)/99`

`=(67991 - 39800.25)/99`

`=28190.75/99`

`=284.7551`



Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`

`=sqrt((67991 - (1995)^2/100)/99)`

`=sqrt((67991 - 39800.25)/99)`

`=sqrt(28190.75/99)`

`=sqrt(284.7551)`

`=16.8747`



Coefficient of Variation (Sample) `=S / bar x * 100 %`

`=16.8747/19.95 * 100 %`

`=84.58 %`
2. Calculate Sample Variance `(S^2)`, Sample Standard deviation `(S)`, Sample Coefficient of Variation from the following mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`f*x^2=(f*x)xx(x)`
`(5)=(4)xx(3)`
21224
323618
424832
5 - 98756392
10 - 1415121802160
15 - 198171362312
20 - 29424.5982401
---------------
`n = 40`-----`sum f*x=486``sum f*x^2=7319`


Mean `bar x = (sum fx)/n`

`=486/40`

`=12.15`



Sample Variance `S^2 = (sum f*x^2 - (sum f*x)^2/n)/(n-1)`

`=(7319 - (486)^2/40)/39`

`=(7319 - 5904.9)/39`

`=1414.1/39`

`=36.259`



Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`

`=sqrt((7319 - (486)^2/40)/39)`

`=sqrt((7319 - 5904.9)/39)`

`=sqrt(1414.1/39)`

`=sqrt(36.259)`

`=6.0215`



Coefficient of Variation (Sample) `=S / bar x * 100 %`

`=6.0215/12.15 * 100 %`

`=49.56 %`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Population Variance, Standard deviation and coefficient of variation
(Previous method)
2. Sample Variance Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.