1. Calculate Sample Coefficient of Variation from the following mixed data
Class | Frequency |
1 | 3 |
2 | 4 |
5 | 10 |
6 - 10 | 23 |
10 - 20 | 20 |
20 - 30 | 20 |
30 - 50 | 15 |
50 - 70 | 3 |
70 - 100 | 2 |
Solution:
Class `(1)` | Frequency `(f)` `(2)` | Mid value `(x)` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2=(f*x)xx(x)` `(5)=(4)xx(3)` |
1 | 3 | 1 | 3 | 3 |
2 | 4 | 2 | 8 | 16 |
5 | 10 | 5 | 50 | 250 |
6 - 10 | 23 | 8 | 184 | 1472 |
10 - 20 | 20 | 15 | 300 | 4500 |
20 - 30 | 20 | 25 | 500 | 12500 |
30 - 50 | 15 | 40 | 600 | 24000 |
50 - 70 | 3 | 60 | 180 | 10800 |
70 - 100 | 2 | 85 | 170 | 14450 |
--- | --- | --- | --- | --- |
| `n = 100` | ----- | `sum f*x=1995` | `sum f*x^2=67991` |
Mean `bar x = (sum fx)/n`
`=1995/100`
`=19.95`
Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
`=sqrt((67991 - (1995)^2/100)/99)`
`=sqrt((67991 - 39800.25)/99)`
`=sqrt(28190.75/99)`
`=sqrt(284.7551)`
`=16.8747`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=16.8747/19.95 * 100 %`
`=84.58 %`
2. Calculate Sample Coefficient of Variation from the following mixed data
Class | Frequency |
2 | 1 |
3 | 2 |
4 | 2 |
5 - 9 | 8 |
10 - 14 | 15 |
15 - 19 | 8 |
20 - 29 | 4 |
Solution:
Class `(1)` | Frequency `(f)` `(2)` | Mid value `(x)` `(3)` | `f*x` `(4)=(2)xx(3)` | `f*x^2=(f*x)xx(x)` `(5)=(4)xx(3)` |
2 | 1 | 2 | 2 | 4 |
3 | 2 | 3 | 6 | 18 |
4 | 2 | 4 | 8 | 32 |
5 - 9 | 8 | 7 | 56 | 392 |
10 - 14 | 15 | 12 | 180 | 2160 |
15 - 19 | 8 | 17 | 136 | 2312 |
20 - 29 | 4 | 24.5 | 98 | 2401 |
--- | --- | --- | --- | --- |
| `n = 40` | ----- | `sum f*x=486` | `sum f*x^2=7319` |
Mean `bar x = (sum fx)/n`
`=486/40`
`=12.15`
Sample Standard deviation `S = sqrt((sum f*x^2 - (sum f*x)^2/n)/(n-1))`
`=sqrt((7319 - (486)^2/40)/39)`
`=sqrt((7319 - 5904.9)/39)`
`=sqrt(1414.1/39)`
`=sqrt(36.259)`
`=6.0215`
Coefficient of Variation (Sample) `=S / bar x * 100 %`
`=6.0215/12.15 * 100 %`
`=49.56 %`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then