Home > Algebra calculators > Variation equations example - x proportion y and x=4,y=2. find x=18,y=?.

2. Variation equations - If `x prop y` and x=4,y=2 then find y when x=18 example ( Enter your problem )
  1. Examples
Other related methods
  1. Definition
  2. If `x prop y` and x=4,y=2 then find y when x=18
  3. If `x prop y`, then prove that `x^3+y^3 prop x^2y-xy^2`

1. Definition
(Previous method)
3. If `x prop y`, then prove that `x^3+y^3 prop x^2y-xy^2`
(Next method)

1. Examples





1. `x prop y and x=4,y=2.` Find `x=18,y=?`

Solution:
`x prop y`

`=>x=K*y`

Now, `x=4,y=2`

`=>4 = K * 2`

`=> K = (4)/(2)`

`=> K = 2`

Hence, `x=2*y`

`x=18,y=?`

`=>18=2 * y`

`=> (18)/(2) = y`

`=>y=9`


2. `x prop yz and x=8,y=4,z=3.` Find `x=?,y=6,z=4`

Solution:
`x prop yz`

`=>x=K*yz`

Now, `x=8,y=4,z=3`

`=>8 = K * 4*3`

`=>8 = K * 12`

`=> K = (8)/(12)`

`=> K = 2/3`

Hence, `x=2/3*yz`

`x=?,y=6,z=4`

`=>x=2/3 * 6*4`

`=>x=2/3 * 24`

`=>x=16`


3. `x prop y^3/z and x=8,y=4,z=3.` Find `x=?,y=6,z=4`

Solution:
`x prop y^3/z`

`=>x=K*y^3/z`

Now, `x=8,y=4,z=3`

`=>8 = K * 4^3/3`

`=>8 = K * 64/3`

`=> K = 8*3/64`

`=> K = 3/8`

Hence, `x=3/8*y^3/z`

`x=?,y=6,z=4`

`=>x=3/8 * 6^3/4`

`=>x=3/8 * 54`

`=>x=81/4`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Definition
(Previous method)
3. If `x prop y`, then prove that `x^3+y^3 prop x^2y-xy^2`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.