Home > Matrix & Vector calculators > Solving systems of linear equations using SOR (Successive over-relaxation) method example

12. SOR (Successive over-relaxation) method example ( Enter your problem )
  1. Example `3x-y+z=-1,-x+3y-z=7,x-y+3z=-7`
  2. Example `4x+3y=24,3x+4y-z=30,-y+4z=-24`
  3. Example `5x+y=10,2x+3y=4`
  4. Example `10x+2y-z=7,x+8y+3z=-4,-2x-y+10z=9`
Other related methods
  1. Inverse Matrix method
  2. Cramer's Rule method
  3. Gauss-Jordan Elimination method
  4. Gauss Elimination Back Substitution method
  5. Gauss Seidel method
  6. Gauss Jacobi method
  7. Elimination method
  8. LU decomposition using Gauss Elimination method
  9. LU decomposition using Doolittle's method
  10. LU decomposition using Crout's method
  11. Cholesky decomposition method
  12. SOR (Successive over-relaxation) method
  13. Relaxation method

11. Cholesky decomposition method
(Previous method)
2. Example `4x+3y=24,3x+4y-z=30,-y+4z=-24`
(Next example)

1. Example `3x-y+z=-1,-x+3y-z=7,x-y+3z=-7`





1. Solve Equations 3x-y+z=-1,-x+3y-z=7,x-y+3z=-7 using SOR (Successive over-relaxation) method

Solution:
We know that, for symmetric positive definite matrix the SOR method converges for values of the relaxation parameter `w` from the interval `0 < w < 2`

The iterations of the SOR method
1. Total Equations are `3`

`3x-y+z=-1`

`-x+3y-z=7`

`x-y+3z=-7`


2. From the above equations, First write down the equations for Gauss Seidel method
`x_(k+1)=1/3(-1+y_(k)-z_(k))`

`y_(k+1)=1/3(7+x_(k+1)+z_(k))`

`z_(k+1)=1/3(-7-x_(k+1)+y_(k+1))`

3. Now multiply the right hand side by the parameter `w` and add to it the vector `x_k` from the previous iteration multiplied by the factor of `(1-w)`

`x_(k+1)=(1-w)*x_(k)+w*1/3(-1+y_(k)-z_(k))`

`y_(k+1)=(1-w)*y_(k)+w*1/3(7+x_(k+1)+z_(k))`

`z_(k+1)=(1-w)*z_(k)+w*1/3(-7-x_(k+1)+y_(k+1))`

4. Initial gauss `(x,y,z) = (0,0,0)` and `w=1.25`

Solution steps are
`1^(st)` Approximation

`x_1=(1-1.25)*0+1.25*1/3[-1+(0)-(0)]=(-0.25)*0+1.25*1/3[-1]=0+-0.41667=-0.41667`

`y_1=(1-1.25)*0+1.25*1/3[7+(-0.41667)+(0)]=(-0.25)*0+1.25*1/3[6.58333]=0+2.74306=2.74306`

`z_1=(1-1.25)*0+1.25*1/3[-7-(-0.41667)+(2.74306)]=(-0.25)*0+1.25*1/3[-3.84028]=0+-1.60012=-1.60012`

`2^(nd)` Approximation

`x_2=(1-1.25)*-0.41667+1.25*1/3[-1+(2.74306)-(-1.60012)]=(-0.25)*-0.41667+1.25*1/3[3.34317]=0.10417+1.39299=1.49715`

`y_2=(1-1.25)*2.74306+1.25*1/3[7+(1.49715)+(-1.60012)]=(-0.25)*2.74306+1.25*1/3[6.89704]=-0.68576+2.87377=2.188`

`z_2=(1-1.25)*-1.60012+1.25*1/3[-7-(1.49715)+(2.188)]=(-0.25)*-1.60012+1.25*1/3[-6.30915]=0.40003+-2.62881=-2.22878`

`3^(rd)` Approximation

`x_3=(1-1.25)*1.49715+1.25*1/3[-1+(2.188)-(-2.22878)]=(-0.25)*1.49715+1.25*1/3[3.41679]=-0.37429+1.42366=1.04937`

`y_3=(1-1.25)*2.188+1.25*1/3[7+(1.04937)+(-2.22878)]=(-0.25)*2.188+1.25*1/3[5.82059]=-0.547+2.42524=1.87824`

`z_3=(1-1.25)*-2.22878+1.25*1/3[-7-(1.04937)+(1.87824)]=(-0.25)*-2.22878+1.25*1/3[-6.17113]=0.5572+-2.5713=-2.01411`

`4^(th)` Approximation

`x_4=(1-1.25)*1.04937+1.25*1/3[-1+(1.87824)-(-2.01411)]=(-0.25)*1.04937+1.25*1/3[2.89235]=-0.26234+1.20515=0.9428`

`y_4=(1-1.25)*1.87824+1.25*1/3[7+(0.9428)+(-2.01411)]=(-0.25)*1.87824+1.25*1/3[5.9287]=-0.46956+2.47029=2.00073`

`z_4=(1-1.25)*-2.01411+1.25*1/3[-7-(0.9428)+(2.00073)]=(-0.25)*-2.01411+1.25*1/3[-5.94207]=0.50353+-2.47586=-1.97234`

`5^(th)` Approximation

`x_5=(1-1.25)*0.9428+1.25*1/3[-1+(2.00073)-(-1.97234)]=(-0.25)*0.9428+1.25*1/3[2.97307]=-0.2357+1.23878=1.00308`

`y_5=(1-1.25)*2.00073+1.25*1/3[7+(1.00308)+(-1.97234)]=(-0.25)*2.00073+1.25*1/3[6.03074]=-0.50018+2.51281=2.01263`

`z_5=(1-1.25)*-1.97234+1.25*1/3[-7-(1.00308)+(2.01263)]=(-0.25)*-1.97234+1.25*1/3[-5.99045]=0.49308+-2.49602=-2.00294`

`6^(th)` Approximation

`x_6=(1-1.25)*1.00308+1.25*1/3[-1+(2.01263)-(-2.00294)]=(-0.25)*1.00308+1.25*1/3[3.01556]=-0.25077+1.25648=1.00572`

`y_6=(1-1.25)*2.01263+1.25*1/3[7+(1.00572)+(-2.00294)]=(-0.25)*2.01263+1.25*1/3[6.00278]=-0.50316+2.50116=1.998`

`z_6=(1-1.25)*-2.00294+1.25*1/3[-7-(1.00572)+(1.998)]=(-0.25)*-2.00294+1.25*1/3[-6.00771]=0.50073+-2.50321=-2.00248`

`7^(th)` Approximation

`x_7=(1-1.25)*1.00572+1.25*1/3[-1+(1.998)-(-2.00248)]=(-0.25)*1.00572+1.25*1/3[3.00048]=-0.25143+1.2502=0.99877`

`y_7=(1-1.25)*1.998+1.25*1/3[7+(0.99877)+(-2.00248)]=(-0.25)*1.998+1.25*1/3[5.99629]=-0.4995+2.49845=1.99895`

`z_7=(1-1.25)*-2.00248+1.25*1/3[-7-(0.99877)+(1.99895)]=(-0.25)*-2.00248+1.25*1/3[-5.99982]=0.50062+-2.49992=-1.9993`

`8^(th)` Approximation

`x_8=(1-1.25)*0.99877+1.25*1/3[-1+(1.99895)-(-1.9993)]=(-0.25)*0.99877+1.25*1/3[2.99826]=-0.24969+1.24927=0.99958`

`y_8=(1-1.25)*1.99895+1.25*1/3[7+(0.99958)+(-1.9993)]=(-0.25)*1.99895+1.25*1/3[6.00028]=-0.49974+2.50012=2.00038`

`z_8=(1-1.25)*-1.9993+1.25*1/3[-7-(0.99958)+(2.00038)]=(-0.25)*-1.9993+1.25*1/3[-5.9992]=0.49983+-2.49967=-1.99984`

`9^(th)` Approximation

`x_9=(1-1.25)*0.99958+1.25*1/3[-1+(2.00038)-(-1.99984)]=(-0.25)*0.99958+1.25*1/3[3.00022]=-0.2499+1.25009=1.0002`

`y_9=(1-1.25)*2.00038+1.25*1/3[7+(1.0002)+(-1.99984)]=(-0.25)*2.00038+1.25*1/3[6.00035]=-0.50009+2.50015=2.00005`

`z_9=(1-1.25)*-1.99984+1.25*1/3[-7-(1.0002)+(2.00005)]=(-0.25)*-1.99984+1.25*1/3[-6.00014]=0.49996+-2.50006=-2.0001`


Solution By SOR (successive over-relaxation) method.
`x=1.0002~=1`

`y=2.00005~=2`

`z=-2.0001~=-2`

Intertions are tabulated as below
Iterationxyz
1-0.416672.74306-1.60012
21.497152.188-2.22878
31.049371.87824-2.01411
40.94282.00073-1.97234
51.003082.01263-2.00294
61.005721.998-2.00248
70.998771.99895-1.9993
80.999582.00038-1.99984
91.00022.00005-2.0001



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



11. Cholesky decomposition method
(Previous method)
2. Example `4x+3y=24,3x+4y-z=30,-y+4z=-24`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.