Find all roots of polynomial using Bairstow method
f(x)=9x4+12x3+13x2+12x+4 and r=-1,s=-1Solution:9x4+12x3+13x2+12x+4=0Let the initial approximation be
r=-1 and
s=-1Here
a4=9,
a3=12,
a2=13,
a1=12,
a0=4Iteration=1
b4=a4=9b3=a3+rb4=12-1⋅9=3b2=a2+rb3+sb4=13-1⋅3-1⋅9=1b1=a1+rb2+sb3=12-1⋅1-1⋅3=8b0=a0+rb1+sb2=4-1⋅8-1⋅1=-5c4=b4=9c3=b3+rc4=3-1⋅9=-6c2=b2+rc3+sc4=1-1⋅(-6)-1⋅9=-2c1=b1+rc2+sc3=8-1⋅(-2)-1⋅(-6)=16The simultaneous equations for
Δr and
Δs are
c2Δr+c3Δs=-b1 and
c1Δr+c2Δs=-b0Substitute values of
c1,c2,c3 and
b0,b1-2Δr-6Δs=-8 and
16Δr-2Δs=5Solving equations using Cramer's rule method
D=c2⋅c2-c1⋅c3=(-2)⋅(-2)-16⋅(-6)=100D1=b0⋅c3-b1⋅c2=(-5)⋅(-6)-8⋅(-2)=46D2=b1⋅c1-b0⋅c2=8⋅16-(-5)⋅(-2)=118Δr=D1D=46100=0.46and
Δs=D2D=118100=1.18The new
r and
s are
r=r+Δr=-1+0.46=-0.54and
s=s+Δs=-1+1.18=0.18The approximate error in r and s
|εa,r|=|Δrr|×100%=|0.46-0.54|×100%=85.1852|εa,s|=|Δss|×100%=|1.180.18|×100%=655.5556
Iteration=2
b4=a4=9b3=a3+rb4=12-0.54⋅9=7.14b2=a2+rb3+sb4=13-0.54⋅7.14+0.18⋅9=10.7644b1=a1+rb2+sb3=12-0.54⋅10.7644+0.18⋅7.14=7.4724b0=a0+rb1+sb2=4-0.54⋅7.4724+0.18⋅10.7644=1.9025c4=b4=9c3=b3+rc4=7.14-0.54⋅9=2.28c2=b2+rc3+sc4=10.7644-0.54⋅2.28+0.18⋅9=11.1532c1=b1+rc2+sc3=7.4724-0.54⋅11.1532+0.18⋅2.28=1.8601The simultaneous equations for
Δr and
Δs are
c2Δr+c3Δs=-b1 and
c1Δr+c2Δs=-b0Substitute values of
c1,c2,c3 and
b0,b111.1532Δr+2.28Δs=-7.4724 and
1.8601Δr+11.1532Δs=-1.9025Solving equations using Cramer's rule method
D=c2⋅c2-c1⋅c3=11.1532⋅11.1532-1.8601⋅2.28=120.1529D1=b0⋅c3-b1⋅c2=1.9025⋅2.28-7.4724⋅11.1532=-79.0038D2=b1⋅c1-b0⋅c2=7.4724⋅1.8601-1.9025⋅11.1532=-7.3193Δr=D1D=-79.0038120.1529=-0.6575and
Δs=D2D=-7.3193120.1529=-0.0609The new
r and
s are
r=r+Δr=-0.54-0.6575=-1.1975
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then