Home > Numerical methods calculators > Bairstow method example

Bairstow method example ( Enter your problem )
  1. (Method-1). Algorithm Formula : b0=a0+rb1+sb2
  2. (Method-1). Example-1 f(x)=x4-3x3+3x2-3x+2 and r=0.1,s=0.1
  3. (Method-1). Example-2 f(x)=x4-2x3+6x2-2x+5 and r=-1,s=-1
  4. (Method-2). Algorithm Formula : b2=a2-pb1-qb0
  5. (Method-2). Example-1 f(x)=x3+x2-x+2 and r=-0.9,s=0.9
  6. (Method-2). Example-2 f(x)=x4+x3+2x2+x+1 and r=0.5,s=0.5

2. (Method-1). Example-1 f(x)=x4-3x3+3x2-3x+2 and r=0.1,s=0.1
(Previous example)
4. (Method-2). Algorithm Formula : b2=a2-pb1-qb0
(Next example)

3. (Method-1). Example-2 f(x)=x4-2x3+6x2-2x+5 and r=-1,s=-1





Find all roots of polynomial using Bairstow method
f(x)=9x4+12x3+13x2+12x+4 and r=-1,s=-1


Solution:
9x4+12x3+13x2+12x+4=0

Let the initial approximation be r=-1 and s=-1

Here a4=9, a3=12, a2=13, a1=12, a0=4

Iteration=1
b4=a4=9

b3=a3+rb4=12-19=3

b2=a2+rb3+sb4=13-13-19=1

b1=a1+rb2+sb3=12-11-13=8

b0=a0+rb1+sb2=4-18-11=-5


c4=b4=9

c3=b3+rc4=3-19=-6

c2=b2+rc3+sc4=1-1(-6)-19=-2

c1=b1+rc2+sc3=8-1(-2)-1(-6)=16


The simultaneous equations for Δr and Δs are

c2Δr+c3Δs=-b1 and c1Δr+c2Δs=-b0

Substitute values of c1,c2,c3 and b0,b1

-2Δr-6Δs=-8 and 16Δr-2Δs=5

Solving equations using Cramer's rule method
D=c2c2-c1c3=(-2)(-2)-16(-6)=100

D1=b0c3-b1c2=(-5)(-6)-8(-2)=46

D2=b1c1-b0c2=816-(-5)(-2)=118

Δr=D1D=46100=0.46

and Δs=D2D=118100=1.18

The new r and s are

r=r+Δr=-1+0.46=-0.54

and s=s+Δs=-1+1.18=0.18

The approximate error in r and s
|εa,r|=|Δrr|×100%=|0.46-0.54|×100%=85.1852

|εa,s|=|Δss|×100%=|1.180.18|×100%=655.5556



Iteration=2
b4=a4=9

b3=a3+rb4=12-0.549=7.14

b2=a2+rb3+sb4=13-0.547.14+0.189=10.7644

b1=a1+rb2+sb3=12-0.5410.7644+0.187.14=7.4724

b0=a0+rb1+sb2=4-0.547.4724+0.1810.7644=1.9025


c4=b4=9

c3=b3+rc4=7.14-0.549=2.28

c2=b2+rc3+sc4=10.7644-0.542.28+0.189=11.1532

c1=b1+rc2+sc3=7.4724-0.5411.1532+0.182.28=1.8601


The simultaneous equations for Δr and Δs are

c2Δr+c3Δs=-b1 and c1Δr+c2Δs=-b0

Substitute values of c1,c2,c3 and b0,b1

11.1532Δr+2.28Δs=-7.4724 and 1.8601Δr+11.1532Δs=-1.9025

Solving equations using Cramer's rule method
D=c2c2-c1c3=11.153211.1532-1.86012.28=120.1529

D1=b0c3-b1c2=1.90252.28-7.472411.1532=-79.0038

D2=b1c1-b0c2=7.47241.8601-1.902511.1532=-7.3193

Δr=D1D=-79.0038120.1529=-0.6575

and Δs=D2D=-7.3193120.1529=-0.0609

The new r and s are

r=r+Δr=-0.54-0.6575=-1.1975


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. (Method-1). Example-1 f(x)=x4-3x3+3x2-3x+2 and r=0.1,s=0.1
(Previous example)
4. (Method-2). Algorithm Formula : b2=a2-pb1-qb0
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.