Home > Statistical Methods calculators > Find Regression line equations from sum x, sum y, sum x^2, sum y^2, sum xy, n example

4. Find Regression line equations from `sum x, sum y, sum x^2, sum y^2, sum xy, n` example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Find the equation of two regression lines, also estimate
  2. Find Correlation Coefficient from two Regression line equations
  3. Find Regression line equations using mean, standard deviation and correlation
  4. Find Regression line equations from `sum x, sum y, sum x^2, sum y^2, sum xy, n`

3. Find Regression line equations using mean, standard deviation and correlation
(Previous method)
2. Example-2
(Next example)

1. Example-1





4. Find Regression line equations from ∑x = 130, ∑y = 220, ∑x2 = 2288, ∑y2 = 8822, ∑xy = 3467, n = 10

Solution:
Mean `bar x = (sum x)/n`

`=130/10`

`=13`


Mean `bar y = (sum y)/n`

`=220/10`

`=22`


`byx = (n * sum xy - sum x * sum y)/(n * sum x^2 - (sum x)^2)`

`=(10 * 3467 - 130 * 220 )/(10 * 2288 - (130)^2)`

`=(34670 - 28600 )/(22880 - 16900)`

`=6070/5980`

`=1.02`


Regression Line y on x
`y - bar y = byx (x - bar x)`

`y - 22 = 1.02 (x - 13)`

`y - 22 = 1.02 x - 13.2`

`y = 1.02 x - 13.2 + 22`

`y = 1.02 x + 8.8`


`bxy = (n * sum xy - sum x * sum y)/(n * sum y^2 - (sum y)^2)`

`=(10 * 3467 - 130 * 220 )/(10 * 8822 - (220)^2)`

`=(34670 - 28600 )/(88220 - 48400)`

`=6070/39820`

`=0.15`


Regression Line x on y
`x - bar x = bxy (y - bar y)`

`x - 13 = 0.15 (y - 22)`

`x - 13 = 0.15 y - 3.35`

`x = 0.15 y - 3.35 + 13`

`x = 0.15 y + 9.65`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Find Regression line equations using mean, standard deviation and correlation
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.