Home > Statistical Methods calculators > Regression line equations for bivariate grouped data example

Regression line equations for bivariate grouped data example ( Enter your problem )
  1. Example-1 (Class-X & Class-Y)
  2. Example-2 (Class-X & Y)
  3. Example-3 (Class-X & Class-Y)

2. Example-2 (Class-X & Y)
(Previous example)

3. Example-3 (Class-X & Class-Y)





Find Regression line equations from the following data
Class-Y
Class-X
40 - 4950 - 5960 - 6970 - 7980 - 8990 - 99
40 - 49354000
50 - 59266200
60 - 691410520
70 - 790051081
80 - 89001465
90 - 99000244


Solution:
C.I.`(y)`40 - 4950 - 5960 - 6970 - 7980 - 8990 - 99
M.V.`(y)`44.554.564.574.584.594.5
C.I.`(x)`M.V.`(x)`
`dy`
`dx`
-2-10123`f_x``fdx``fdx^2``fdxdy`
40 - 4944.5-2[12]3[10]5[0]4[0]0[0]0[0]012-244822
50 - 5954.5-1[4]2[6]6[0]6[-2]2[0]0[0]016-16168
60 - 6964.50[0]1[0]4[0]10[0]5[0]2[0]022000
70 - 7974.51[0]0[0]0[0]5[10]10[16]8[3]124242429
80 - 8984.52[0]0[0]0[0]1[8]4[24]6[30]516326462
90 - 9994.53[0]0[0]0[0]0[6]2[24]4[36]410309066
`f_y`6152623201010046242187
`fdy`-12-15023403066
`fdy^2`24150238090232
`fdxdy`16160226469187


`bar x = A + (sum fdx)/n * h_x`

`=64.5 + 46/100 * 10`

`=64.5 + 0.46 * 10`

`=64.5 + 4.6`

`=69.1`


`bar y = B + (sum fdy)/n * h_y`

`=64.5 + 66/100 * 10`

`=64.5 + 0.66 * 10`

`=64.5 + 6.6`

`=71.1`


`byx = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdx^2 - (sum fdx)^2) * (h_y)/(h_x)`

`=(100 * 187 - 46 * 66 )/(100 * 242 - (46)^2) * 10/10`

`=(18700 - 3036 )/(24200 - 2116) * 10/10`

`=15664/22084 * 10/10`

`=0.7093`


Regression Line y on x
`y - bar y = byx (x - bar x)`

`y - 71.1 = 0.7093 (x - 69.1)`

`y - 71.1 = 0.7093 x - 49.0121`

`y = 0.7093 x - 49.0121 + 71.1`

`y = 0.7093 x + 22.0879`


`bxy = (n * sum fdxdy - sum fdx * sum fdy ) / (n * sum fdy^2 - (sum fdy)^2) * (h_x)/(h_y)`

`=(100 * 187 - 46 * 66 )/(100 * 232 - (66)^2) * 10/10`

`=(18700 - 3036 )/(23200 - 4356) * 10/10`

`=15664/18844 * 10/10`

`=0.8312`


Regression Line x on y
`x - bar x = bxy (y - bar y)`

`x - 69.1 = 0.8312 (y - 71.1)`

`x - 69.1 = 0.8312 y - 59.1016`

`x = 0.8312 y - 59.1016 + 69.1`

`x = 0.8312 y + 9.9984`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 (Class-X & Y)
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.