Home > Numerical methods calculators > Numerical Interpolation using Forward, Backward, Divided Difference, Lagrange's method example

1. Newton's Forward Difference formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Next example)

1. Formula & Example-1





Formula
Newton's Forward Difference formula
`p = (x - x_0)/h`
`y(x) = y_0 + p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_0 + (p(p - 1)(p - 2))/(3!) * Delta^3y_0 + (p(p - 1)(p - 2)(p - 3))/(4!) * Delta^4y_0 + ...`

Examples
1. Find Solution using Newton's Forward Difference formula
xf(x)
189146
190166
191181
192193
1931101

x = 1895
Finding option 1. Value f(2)


Solution:
The value of table for `x` and `y`

x18911901191119211931
y46668193101

Newton's forward difference interpolation method to find solution

Newton's forward difference table is
xy`Deltay``Delta^2y``Delta^3y``Delta^4y`
189146
`66-46=20`
190166`15-20=-5`
`81-66=15``-3--5=2`
191181`12-15=-3``-1-2=-3`
`93-81=12``-4--3=-1`
192193`8-12=-4`
`101-93=8`
1931101


The value of `x` at you want to find the `f(x) : x = 1895`

`h = x_1 - x_0 = 1901 - 1891 = 10`

`p = (x - x_0)/h = (1895 - 1891)/10 = 0.4`

Newton's forward difference interpolation formula is
`y(x) = y_0 + p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_0 + (p(p - 1)(p - 2))/(3!) * Delta^3y_0 + (p(p - 1)(p - 2)(p - 3))/(4!) * Delta^4y_0`

`y(1895) = 46 + 0.4 xx 20 + (0.4 (0.4 - 1))/(2) xx -5 + (0.4 (0.4 - 1)(0.4 - 2))/(6) xx 2 + (0.4 (0.4 - 1)(0.4 - 2)(0.4 - 3))/(24) xx -3`

`y(1895) = 46 +8 +0.6 +0.128 +0.1248`

`y(1895) = 54.8528`


Solution of newton's forward interpolation method `y(1895) = 54.8528`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.