Home > Statistical Methods calculators > Single Exponential Smoothing forecast example

8. Single Exponential Smoothing forecast example ( Enter your problem )
  1. Formula & 3 year Single Exponential Smoothing forecast Example
  2. 4 year Single Exponential Smoothing forecast Example
  3. 5 year Single Exponential Smoothing forecast Example
Other related methods
  1. Simple Moving Average
  2. Weighted Moving Average
  3. Exponential Moving Average
  4. Single Exponential Smoothing
  5. Simple Moving Average forecast
  6. Weighted Moving Average forecast
  7. Exponential Moving Average forecast
  8. Single Exponential Smoothing forecast

7. Exponential Moving Average forecast
(Previous method)
2. 4 year Single Exponential Smoothing forecast Example
(Next example)

1. Formula & 3 year Single Exponential Smoothing forecast Example





Formula
Examples
1) 3 year Single Exponential Smoothing forecast
year12345678910
Sales30253525203035403045
Calculate 3 year Single Exponential Smoothing forecast


Solution:
(1)
year
(2)
Sales
(3)
Exponential Smoothing
`(alpha=0.3)`
13030
225`0.3*30+0.7*30=30`
335`0.3*25+0.7*30=28.5`
425`0.3*35+0.7*28.5=30.45`
520`0.3*25+0.7*30.45=28.815`
630`0.3*20+0.7*28.815=26.1705`
735`0.3*30+0.7*26.1705=27.3193`
840`0.3*35+0.7*27.3193=29.6235`
930`0.3*40+0.7*29.6235=32.7365`
1045`0.3*30+0.7*32.7365=31.9155`
11`0.3*45+0.7*31.9155=35.8409`


(1)
year
(2)
Sales
(3)
Exponential Smoothing
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
13030
22530
33528.5
42530.45`25-30.45=-5.45``5.45``29.7025``21.8%`
52028.815`20-28.815=-8.815``8.815``77.7042``44.07%`
63026.1705`30-26.1705=3.8295``3.8295``14.6651``12.77%`
73527.3193`35-27.3193=7.6807``7.6807``58.9924``21.94%`
84029.6235`40-29.6235=10.3765``10.3765``107.6708``25.94%`
93032.7365`30-32.7365=-2.7365``2.7365``7.4883``9.12%`
104531.9155`45-31.9155=13.0845``13.0845``171.2032``29.08%`
1135.8409Total`51.9725``467.4265``164.72%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=51.9725/7=7.4246`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=467.4265/7=66.7752`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(66.7752)=8.1716`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=164.72/7=23.53`



2) 3 year Single Exponential Smoothing forecast
year123456
Sales650700810800900700
Calculate 3 year Single Exponential Smoothing forecast


Solution:
(1)
year
(2)
Sales
(3)
Exponential Smoothing
`(alpha=0.1)`
1650650
2700`0.1*650+0.9*650=650`
3810`0.1*700+0.9*650=655`
4800`0.1*810+0.9*655=670.5`
5900`0.1*800+0.9*670.5=683.45`
6700`0.1*900+0.9*683.45=705.105`
7`0.1*700+0.9*705.105=704.5945`


(1)
year
(2)
Sales
(3)
Exponential Smoothing
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
1650650
2700650
3810655
4800670.5`800-670.5=129.5``129.5``16770.25``16.19%`
5900683.45`900-683.45=216.55``216.55``46893.9025``24.06%`
6700705.105`700-705.105=-5.105``5.105``26.061``0.73%`
7704.5945Total`351.155``63690.2135``40.98%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=351.155/3=117.0517`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=63690.2135/3=21230.0712`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(21230.0712)=145.7054`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=40.98/3=13.66`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Exponential Moving Average forecast
(Previous method)
2. 4 year Single Exponential Smoothing forecast Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.