Home > Statistical Methods calculators > Single Exponential Smoothing forecast example

8. Single Exponential Smoothing forecast example ( Enter your problem )
  1. Formula & 3 year Single Exponential Smoothing forecast Example
  2. 4 year Single Exponential Smoothing forecast Example
  3. 5 year Single Exponential Smoothing forecast Example
Other related methods
  1. Simple Moving Average
  2. Weighted Moving Average
  3. Exponential Moving Average
  4. Single Exponential Smoothing
  5. Simple Moving Average forecast
  6. Weighted Moving Average forecast
  7. Exponential Moving Average forecast
  8. Single Exponential Smoothing forecast

1. Formula & 3 year Single Exponential Smoothing forecast Example
(Previous example)
3. 5 year Single Exponential Smoothing forecast Example
(Next example)

2. 4 year Single Exponential Smoothing forecast Example





1) 4 year Single Exponential Smoothing forecast
year12345678910
Sales20212322252427262830
Calculate 4 year Single Exponential Smoothing forecast


Solution:
(1)
year
(2)
Sales
(3)
Exponential Smoothing
`(alpha=0.1)`
12020
221`0.1*20+0.9*20=20`
323`0.1*21+0.9*20=20.1`
422`0.1*23+0.9*20.1=20.39`
525`0.1*22+0.9*20.39=20.551`
624`0.1*25+0.9*20.551=20.9959`
727`0.1*24+0.9*20.9959=21.2963`
826`0.1*27+0.9*21.2963=21.8667`
928`0.1*26+0.9*21.8667=22.28`
1030`0.1*28+0.9*22.28=22.852`
11`0.1*30+0.9*22.852=23.5668`


(1)
year
(2)
Sales
(3)
Exponential Smoothing
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
12020
22120
32320.1
42220.39
52520.551`25-20.551=4.449``4.449``19.7936``17.8%`
62420.9959`24-20.9959=3.0041``3.0041``9.0246``12.52%`
72721.2963`27-21.2963=5.7037``5.7037``32.5321``21.12%`
82621.8667`26-21.8667=4.1333``4.1333``17.0843``15.9%`
92822.28`28-22.28=5.72``5.72``32.7183``20.43%`
103022.852`30-22.852=7.148``7.148``51.0938``23.83%`
1123.5668Total`30.1581``162.2467``111.59%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=30.1581/6=5.0263`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=162.2467/6=27.0411`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(27.0411)=5.2001`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=111.59/6=18.6`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & 3 year Single Exponential Smoothing forecast Example
(Previous example)
3. 5 year Single Exponential Smoothing forecast Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.