Home > Numerical methods calculators > Three point Forward difference, Backward difference, Central difference formula numerical differentiation example

2. Three point Forward difference, Backward difference, Central difference formula numerical differentiation example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (f(x)=cosx)
  4. Example-4 (f(x)=2x^3+x^2-4)
  5. Example-5 (f(x)=xlnx)
  6. Example-6 (f(x)=sinx)
Other related methods
  1. Two point Forward, Backward, Central difference formula
  2. Three point Forward, Backward, Central difference formula
  3. Four point Forward, Backward, Central difference formula
  4. Five point Forward, Central difference formula

4. Example-4 (f(x)=2x^3+x^2-4)
(Previous example)
6. Example-6 (f(x)=sinx)
(Next example)

5. Example-5 (f(x)=xlnx)





f(x)=xlnx and h = 1, estimate f^'(4) and f^('')(4)
using Three point Forward difference, Backward difference, Central difference formula numerical differentiation
Also find exact value of f', f'' and error for each estimation


Solution:
Equation is f(x) = xln(x).

:. f^'(x) = ln(x)+1

:. f^('')(x) = 1/x

The value of table for x and y

x23456
y1.38633.29585.54528.047210.7506

Three-point FDF (Forward difference formula)
f^'(x)=1/(2h)[-3f(x)+4f(x+h)-f(x+2h)]

f^'(4)=1/(2*1)[-3f(4)+4f(4+1)-f(4+2*1)]

f^'(4)=1/2[-3f(4)+4f(5)-f(6)]

f^'(4)=1/2[-3(5.5452)+4(8.0472)-10.7506]

f^'(4)=2.4013

Absolute Error:|"exact value of " f^'(4)-(2.4013)|=|2.3863 -2.4013|=0.015



Three-point BDF (Backward difference formula)
f^'(x)=1/(2h)[f(x-2h)-4f(x-h)+3f(x)]

f^'(4)=1/(2*1)[f(4-2*1)-4f(4-1)+3f(4)]

f^'(4)=1/2[f(2)-4f(3)+3f(4)]

f^'(4)=1/2[1.3863-4(3.2958)+3(5.5452)]

f^'(4)=2.4192

Absolute Error:|"exact value of " f^'(4)-(2.4192)|=|2.3863 -2.4192|=0.0329



Three-point CDF (Central difference formula)
f^'(x)=(f(x+h)-f(x-h))/(2h)

f^'(4)=(f(4+1)-f(4-1))/(2*1)

f^'(4)=(f(5)-f(3))/2

f^'(4)=(8.0472-3.2958)/2

f^'(4)=2.3757

Absolute Error:|"exact value of " f^'(4)-(2.3757)|=|2.3863 -2.3757|=0.0106



Three-point FDF (Forward difference formula) for second derivatives
f^('')(x)=(f(x)-2f(x+h)+f(x+2h))/(h^2)

f^('')(4)=(f(4)-2f(4+1)+f(4+2*1))/((1)^2)

f^('')(4)=(f(4)-2f(5)+f(6))/(1)

f^('')(4)=(5.5452-2(8.0472)+10.7506)/(1)

f^('')(4)=0.2014

Absolute Error:|"exact value of " f^('')(4)-(0.2014)|=|0.25 -0.2014|=0.0486



Three-point BDF (Backward difference formula) for second derivatives
f^('')(x)=(f(x-2h)-2f(x-h)+f(x))/(h^2)

f^('')(4)=(f(4-2*1)-2f(4-1)+f(4))/((1)^2)

f^('')(4)=(f(2)-2f(3)+f(4))/(1)

f^('')(4)=(1.3863-2(3.2958)+5.5452)/(1)

f^('')(4)=0.3398

Absolute Error:|"exact value of " f^('')(4)-(0.3398)|=|0.25 -0.3398|=0.0898



Three-point CDF (Central difference formula) for second derivatives
f^('')(x)=(f(x-h)-2f(x)+f(x+h))/(h^2)

f^('')(4)=(f(4-1)-2f(4)+f(4+1))/(1)^2

f^('')(4)=(f(3)-2f(4)+f(5))/(1)

f^('')(4)=(3.2958-2(5.5452)+8.0472)/(1)

f^('')(4)=0.2527

Absolute Error:|"exact value of " f^('')(4)-(0.2527)|=|0.25 -0.2527|=0.0027


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 (f(x)=2x^3+x^2-4)
(Previous example)
6. Example-6 (f(x)=sinx)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.