Home > Numerical methods calculators > Three point Forward difference, Backward difference, Central difference formula numerical differentiation example

2. Three point Forward difference, Backward difference, Central difference formula numerical differentiation example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (`f(x)=cosx`)
  4. Example-4 (`f(x)=2x^3+x^2-4`)
  5. Example-5 (`f(x)=xlnx`)
  6. Example-6 (`f(x)=sinx`)
Other related methods
  1. Two point Forward, Backward, Central difference formula
  2. Three point Forward, Backward, Central difference formula
  3. Four point Forward, Backward, Central difference formula
  4. Five point Forward, Central difference formula

2. Example-2 (table data)
(Previous example)
4. Example-4 (`f(x)=2x^3+x^2-4`)
(Next example)

3. Example-3 (`f(x)=cosx`)





`f(x)=cosx` and `h = 0.05`, estimate `f^'(1.2) and f^('')(1.2)`
using Three point Forward difference, Backward difference, Central difference formula numerical differentiation
Also find exact value of f', f'' and error for each estimation


Solution:
Equation is `f(x) = cos(x)`.

`:. f^'(x) = -sin(x)`

`:. f^('')(x) = -cos(x)`

The value of table for `x` and `y`

x1.11.151.21.251.3
y0.45360.40850.36240.31530.2675

Three-point FDF (Forward difference formula)
`f^'(x)=1/(2h)[-3f(x)+4f(x+h)-f(x+2h)]`

`f^'(1.2)=1/(2*0.05)[-3f(1.2)+4f(1.2+0.05)-f(1.2+2*0.05)]`

`f^'(1.2)=1/0.1[-3f(1.2)+4f(1.25)-f(1.3)]`

`f^'(1.2)=1/0.1[-3(0.3624)+4(0.3153)-0.2675]`

`f^'(1.2)=-0.9328`

Absolute Error:`|"exact value of " f^'(1.2)-(-0.9328)|=|-0.932 +0.9328|=0.0008`



Three-point BDF (Backward difference formula)
`f^'(x)=1/(2h)[f(x-2h)-4f(x-h)+3f(x)]`

`f^'(1.2)=1/(2*0.05)[f(1.2-2*0.05)-4f(1.2-0.05)+3f(1.2)]`

`f^'(1.2)=1/0.1[f(1.1)-4f(1.15)+3f(1.2)]`

`f^'(1.2)=1/0.1[0.4536-4(0.4085)+3(0.3624)]`

`f^'(1.2)=-0.9328`

Absolute Error:`|"exact value of " f^'(1.2)-(-0.9328)|=|-0.932 +0.9328|=0.0008`



Three-point CDF (Central difference formula)
`f^'(x)=(f(x+h)-f(x-h))/(2h)`

`f^'(1.2)=(f(1.2+0.05)-f(1.2-0.05))/(2*0.05)`

`f^'(1.2)=(f(1.25)-f(1.15))/0.1`

`f^'(1.2)=(0.3153-0.4085)/0.1`

`f^'(1.2)=-0.9317`

Absolute Error:`|"exact value of " f^'(1.2)-(-0.9317)|=|-0.932 +0.9317|=0.0004`



Three-point FDF (Forward difference formula) for second derivatives
`f^('')(x)=(f(x)-2f(x+h)+f(x+2h))/(h^2)`

`f^('')(1.2)=(f(1.2)-2f(1.2+0.05)+f(1.2+2*0.05))/((0.05)^2)`

`f^('')(1.2)=(f(1.2)-2f(1.25)+f(1.3))/(0.0025)`

`f^('')(1.2)=(0.3624-2(0.3153)+0.2675)/(0.0025)`

`f^('')(1.2)=-0.3153`

Absolute Error:`|"exact value of " f^('')(1.2)-(-0.3153)|=|-0.3624 +0.3153|=0.0471`



Three-point BDF (Backward difference formula) for second derivatives
`f^('')(x)=(f(x-2h)-2f(x-h)+f(x))/(h^2)`

`f^('')(1.2)=(f(1.2-2*0.05)-2f(1.2-0.05)+f(1.2))/((0.05)^2)`

`f^('')(1.2)=(f(1.1)-2f(1.15)+f(1.2))/(0.0025)`

`f^('')(1.2)=(0.4536-2(0.4085)+0.3624)/(0.0025)`

`f^('')(1.2)=-0.4084`

Absolute Error:`|"exact value of " f^('')(1.2)-(-0.4084)|=|-0.3624 +0.4084|=0.046`



Three-point CDF (Central difference formula) for second derivatives
`f^('')(x)=(f(x-h)-2f(x)+f(x+h))/(h^2)`

`f^('')(1.2)=(f(1.2-0.05)-2f(1.2)+f(1.2+0.05))/(0.05)^2`

`f^('')(1.2)=(f(1.15)-2f(1.2)+f(1.25))/(0.0025)`

`f^('')(1.2)=(0.4085-2(0.3624)+0.3153)/(0.0025)`

`f^('')(1.2)=-0.3623`

Absolute Error:`|"exact value of " f^('')(1.2)-(-0.3623)|=|-0.3624 +0.3623|=0.0001`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 (table data)
(Previous example)
4. Example-4 (`f(x)=2x^3+x^2-4`)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.