Home > College Algebra calculators > Modular multiplicative inverse example

4. Modular multiplicative inverse example ( Enter your problem )
  1. Examples
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation

3. Euclid's Algorithm
(Previous method)
5. Modulo
(Next method)

1. Examples





1. Modular multiplicative inverse for `11` and `12`

Solution:
`y-=z^(-1)\ ("mod "n)-=11^(-1)\ ("mod "12)-=11\ ("mod "12)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
11210
21101
3`12-:11=1``12-1xx11=1``1-1xx0=1``0-1xx1=-1`
4`11-:1=11``11-11xx1=0``0-11xx1=-11``1-11xx-1=12`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-1`

Here `t` is -ve, so add 12.

`:.t=-1+12=11`

`:.` multiplicative inverse `11` mod `12=11`


2. Modular multiplicative inverse for `7` and `11`

Solution:
`y-=z^(-1)\ ("mod "n)-=7^(-1)\ ("mod "11)-=8\ ("mod "11)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
11110
2701
3`11-:7=1``11-1xx7=4``1-1xx0=1``0-1xx1=-1`
4`7-:4=1``7-1xx4=3``0-1xx1=-1``1-1xx-1=2`
5`4-:3=1``4-1xx3=1``1-1xx-1=2``-1-1xx2=-3`
6`3-:1=3``3-3xx1=0``-1-3xx2=-7``2-3xx-3=11`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=2,t=-3`

Here `t` is -ve, so add 11.

`:.t=-3+11=8`

`:.` multiplicative inverse `7` mod `11=8`


3. Modular multiplicative inverse for `3` and `7`

Solution:
`y-=z^(-1)\ ("mod "n)-=3^(-1)\ ("mod "7)-=5\ ("mod "7)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1710
2301
3`7-:3=2``7-2xx3=1``1-2xx0=1``0-2xx1=-2`
4`3-:1=3``3-3xx1=0``0-3xx1=-3``1-3xx-2=7`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-2`

Here `t` is -ve, so add 7.

`:.t=-2+7=5`

`:.` multiplicative inverse `3` mod `7=5`


4. Modular multiplicative inverse for `60` and `36`

Solution:
`y-=z^(-1)\ ("mod "n)-=60^(-1)\ ("mod "36)-=24^(-1)\ ("mod "36)-=0\ ("mod "36)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
13610
26001
3`36-:60=0``36-0xx60=36``1-0xx0=1``0-0xx1=0`
4`60-:36=1``60-1xx36=24``0-1xx1=-1``1-1xx0=1`
5`36-:24=1``36-1xx24=12``1-1xx-1=2``0-1xx1=-1`
6`24-:12=2``24-2xx12=0``-1-2xx2=-5``1-2xx-1=3`


we get answer by taking the last non-zero row for Remainder `r=12` (gcd), `s=2,t=-1`

Here gcd (Remainder r=12) is not 1, So 60 does not have a multiplicative inverse modulo 36

5. Modular multiplicative inverse for `35` and `20`

Solution:
`y-=z^(-1)\ ("mod "n)-=35^(-1)\ ("mod "20)-=15^(-1)\ ("mod "20)-=0\ ("mod "20)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
12010
23501
3`20-:35=0``20-0xx35=20``1-0xx0=1``0-0xx1=0`
4`35-:20=1``35-1xx20=15``0-1xx1=-1``1-1xx0=1`
5`20-:15=1``20-1xx15=5``1-1xx-1=2``0-1xx1=-1`
6`15-:5=3``15-3xx5=0``-1-3xx2=-7``1-3xx-1=4`


we get answer by taking the last non-zero row for Remainder `r=5` (gcd), `s=2,t=-1`

Here gcd (Remainder r=5) is not 1, So 35 does not have a multiplicative inverse modulo 20


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Euclid's Algorithm
(Previous method)
5. Modulo
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.