Home > College Algebra calculators > Extended Euclidean Algorithm example

2. Extended Euclidean Algorithm example ( Enter your problem )
  1. Examples
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

1. Chinese Remainder Theorem
(Previous method)
3. Euclid's Algorithm
(Next method)

1. Examples





1. Extended Euclidean Algorithm for `11` and `12`

Solution:
`y-=z^(-1)\ ("mod "n)-=11^(-1)\ ("mod "12)-=11\ ("mod "12)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=12``s_1=1``t_1=0`
2`r_2=11``s_2=0``t_2=1`
3`12-:11=1``12-1xx11=1``1-1xx0=1``0-1xx1=-1`
4`11-:1=11``11-11xx1=0``0-11xx1=-11``1-11xx-1=12`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-1`

Showing the identity, we have `12s+11t = gcd(12,11)=1`

`12(1)+11(-1)=1`
2. Extended Euclidean Algorithm for `7` and `11`

Solution:
`y-=z^(-1)\ ("mod "n)-=7^(-1)\ ("mod "11)-=8\ ("mod "11)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=11``s_1=1``t_1=0`
2`r_2=7``s_2=0``t_2=1`
3`11-:7=1``11-1xx7=4``1-1xx0=1``0-1xx1=-1`
4`7-:4=1``7-1xx4=3``0-1xx1=-1``1-1xx-1=2`
5`4-:3=1``4-1xx3=1``1-1xx-1=2``-1-1xx2=-3`
6`3-:1=3``3-3xx1=0``-1-3xx2=-7``2-3xx-3=11`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=2,t=-3`

Showing the identity, we have `11s+7t = gcd(11,7)=1`

`11(2)+7(-3)=1`
3. Extended Euclidean Algorithm for `3` and `7`

Solution:
`y-=z^(-1)\ ("mod "n)-=3^(-1)\ ("mod "7)-=5\ ("mod "7)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=7``s_1=1``t_1=0`
2`r_2=3``s_2=0``t_2=1`
3`7-:3=2``7-2xx3=1``1-2xx0=1``0-2xx1=-2`
4`3-:1=3``3-3xx1=0``0-3xx1=-3``1-3xx-2=7`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-2`

Showing the identity, we have `7s+3t = gcd(7,3)=1`

`7(1)+3(-2)=1`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Chinese Remainder Theorem
(Previous method)
3. Euclid's Algorithm
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.