Home > College Algebra calculators > Fermat's Little Theorem example

7. Fermat's Little Theorem example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `3^87 mod 5`
  3. Example-3 : `5^284 mod 7`
  4. Example-4 : `5^119 mod 59`
  5. Example-5 : `3^100,000 mod 53`
  6. Example-5 : `a=3` and `p=5`
  7. Example-5 : `a=3` and `p=7`
  8. Example-5 : `a=7` and `p=11`
  9. Example-5 : `a=7` and `p=13`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

6. Fast modular exponentiation
(Previous method)
2. Example-2 : `3^87 mod 5`
(Next example)

1. Example-1 : `3^302 mod 5`





3^302 mod 5 using Fermat's Little Theorem

Solution:
`3^(302) ("mod "5)`

Fermat's Little Theorem
`a^(p-1)-=1 ("mod "p)` (where `p` is prime, `a` is not divisible by `p`)


Step-1: Identify conditions :
`p=5` is prime.

`a=3` is not divisible by `p=5`.

So, Apply the theorem
`3^(5-1)-=1 ("mod "5)`

`3^(4)-=1 ("mod "5)`

Step-2: Reduce the exponent `302`

`302-:4=75` with a remainder of `2`

i.e., `302=4xx75+2`

Step-3: Simplify
We have
`3^(4)-=1 ("mod "5)`

Taking power `75` on both sides

`(3^(4))^75-=1^75 ("mod "5)`

`3^((4xx75))-=1 ("mod "5)`

Multiply by `3^2` on both sides

`3^((4xx75))xx3^2-=1xx3^2 ("mod "5)`

`3^((4xx75)+2)-=3^2 ("mod "5)`

`3^(302)-=9 ("mod "5)`

`3^(302)-=4 ("mod "5)`

`:.` The remainder is `4` when you divide `3^(302)` by `5`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Fast modular exponentiation
(Previous method)
2. Example-2 : `3^87 mod 5`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.