Home > College Algebra calculators > Modular multiplicative inverse example

7. Modular multiplicative inverse example ( Enter your problem )
  1. Examples
Other related methods
  1. Chinese Remainder Theorem
  2. Modulo
  3. Fast modular exponentiation
  4. Fermat's Little Theorem
  5. Extended Euclidean Algorithm
  6. Euclid's Algorithm
  7. Modular multiplicative inverse

6. Euclid's Algorithm
(Previous method)

1. Examples





1. Modular multiplicative inverse for `11` mod `12`

Solution:
`y-=z^(-1)\ ("mod "n)-=11^(-1)\ ("mod "12)-=11\ ("mod "12)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=12``s_1=1``t_1=0`
2`r_2=11``s_2=0``t_2=1`
3`12-:11=1``12-1xx11=1``1-1xx0=1``0-1xx1=-1`
4`11-:1=11``11-11xx1=0``0-11xx1=-11``1-11xx-1=12`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-1`

Here `t` is negative, so add 12.

`:.t=-1+12=11`

`:.` multiplicative inverse `11` mod `12=11`
2. Modular multiplicative inverse for `7` mod `11`

Solution:
`y-=z^(-1)\ ("mod "n)-=7^(-1)\ ("mod "11)-=8\ ("mod "11)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=11``s_1=1``t_1=0`
2`r_2=7``s_2=0``t_2=1`
3`11-:7=1``11-1xx7=4``1-1xx0=1``0-1xx1=-1`
4`7-:4=1``7-1xx4=3``0-1xx1=-1``1-1xx-1=2`
5`4-:3=1``4-1xx3=1``1-1xx-1=2``-1-1xx2=-3`
6`3-:1=3``3-3xx1=0``-1-3xx2=-7``2-3xx-3=11`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=2,t=-3`

Here `t` is negative, so add 11.

`:.t=-3+11=8`

`:.` multiplicative inverse `7` mod `11=8`
3. Modular multiplicative inverse for `3` mod `7`

Solution:
`y-=z^(-1)\ ("mod "n)-=3^(-1)\ ("mod "7)-=5\ ("mod "7)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=7``s_1=1``t_1=0`
2`r_2=3``s_2=0``t_2=1`
3`7-:3=2``7-2xx3=1``1-2xx0=1``0-2xx1=-2`
4`3-:1=3``3-3xx1=0``0-3xx1=-3``1-3xx-2=7`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-2`

Here `t` is negative, so add 7.

`:.t=-2+7=5`

`:.` multiplicative inverse `3` mod `7=5`
4. Modular multiplicative inverse for `60` mod `36`

Solution:
`y-=z^(-1)\ ("mod "n)-=60^(-1)\ ("mod "36)-=24^(-1)\ ("mod "36)-=0\ ("mod "36)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=36``s_1=1``t_1=0`
2`r_2=60``s_2=0``t_2=1`
3`36-:60=0``36-0xx60=36``1-0xx0=1``0-0xx1=0`
4`60-:36=1``60-1xx36=24``0-1xx1=-1``1-1xx0=1`
5`36-:24=1``36-1xx24=12``1-1xx-1=2``0-1xx1=-1`
6`24-:12=2``24-2xx12=0``-1-2xx2=-5``1-2xx-1=3`


we get answer by taking the last non-zero row for Remainder `r=12` (gcd), `s=2,t=-1`

Here gcd (Remainder r=12) is not 1, So 60 does not have a multiplicative inverse modulo 36
5. Modular multiplicative inverse for `35` mod `20`

Solution:
`y-=z^(-1)\ ("mod "n)-=35^(-1)\ ("mod "20)-=15^(-1)\ ("mod "20)-=0\ ("mod "20)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1`r_1=20``s_1=1``t_1=0`
2`r_2=35``s_2=0``t_2=1`
3`20-:35=0``20-0xx35=20``1-0xx0=1``0-0xx1=0`
4`35-:20=1``35-1xx20=15``0-1xx1=-1``1-1xx0=1`
5`20-:15=1``20-1xx15=5``1-1xx-1=2``0-1xx1=-1`
6`15-:5=3``15-3xx5=0``-1-3xx2=-7``1-3xx-1=4`


we get answer by taking the last non-zero row for Remainder `r=5` (gcd), `s=2,t=-1`

Here gcd (Remainder r=5) is not 1, So 35 does not have a multiplicative inverse modulo 20




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Euclid's Algorithm
(Previous method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.