Home > Calculus calculators > Find maximum and minimum value of y example

2. Find maximum and minimum value of y example ( Enter your problem )
  1. Method & Example `y=x^3+6x^2-15x+7`
  2. Example `y=x^3-9x^2+24x+2`
  3. Example `y=4x^3+19x^2-14x+3`
  4. Example `y=3x^2+12x-15`
Other related methods
  1. Derivative
  2. Find maximum and minimum value of y

2. Example `y=x^3-9x^2+24x+2`
(Previous example)
4. Example `y=3x^2+12x-15`
(Next example)

3. Example `y=4x^3+19x^2-14x+3`





Find maximum and minimum value of `y=4x^3+19x^2-14x+3`

Solution:
Here, `y=4x^3+19x^2-14x+3`

`:. (dy)/(dx)=``d/(dx)(4x^3+19x^2-14x+3)`

`=d/(dx)(4x^3)+d/(dx)(19x^2)-d/(dx)(14x)+d/(dx)(3)`

`=12x^2+38x-14+0`

`=12x^2+38x-14`

For stationary values, `(dy)/(dx)=0`

`=>12x^2+38x-14=0`

`=>2(6x^2+19x-7) = 0`

`=>2(6x^2-2x+21x-7) = 0`

`=>2(2x(3x-1)+7(3x-1)) = 0`

`=>2(3x-1)(2x+7) = 0`

`=>(3x-1) = 0" or "(2x+7) = 0`

`=>3x = 1" or "2x = -7`

`=>x = 1/3" or "x = -7/2`

The solution is
`x = (1/3),x = -(7/2)`

`:.`At `x=(1/3)` and `x=-(7/2)` we get stationary values.

Now, `(d^2y)/(dx^2)``=12x^2+38x-14`

`d/(dx)(12x^2+38x-14)`

`=d/(dx)(12x^2)+d/(dx)(38x)-d/(dx)(14)`

`=24x+38-0`

`=24x+38`

`((d^2y)/(dx^2))_(x=(1/3))``=24*(1/3)+38`

`=8+38`

`=46` (positive)

`:.` At `x=(1/3)` the function is minimum

`((d^2y)/(dx^2))_(x=-(7/2))``=24*(-(7/2))+38`

`=24*(-7/2)+38`

`=-84+38`

`=-46` (negative)

`:.` At `x=-(7/2)` the function is maximum

Now, `y=4x^3+19x^2-14x+3`

`"putting " x=(1/3)`

`y_(min)``=4*(1/3)^3+19*(1/3)^2-14*(1/3)+3`

`=4/27+19/9-14/3+3`

`=16/27`

`"putting " x=-(7/2)`

`y_(max)``=4*(-(7/2))^3+19*(-(7/2))^2-14*(-(7/2))+3`

`=4*(-7/2)^3+19*(-7/2)^2-14*(-7/2)+3`

`=-343/2+931/4+49+3`

`=453/4`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example `y=x^3-9x^2+24x+2`
(Previous example)
4. Example `y=3x^2+12x-15`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.