Home > Algebra calculators > If x+y=5 and xy=6 then find x-y, x^2+y^2, x^2-y^2, x^3+y^3, x^3-y^3, x^4+y^4, x^4-y^4 example

2. If `x+y=5` and `x-y=1`, then find `x^2+y^2` example ( Enter your problem )
  1. Examples
Other related methods
  1. If `x+1/x = 2`, then find `x-1/x`
  2. If `x+y = 5` and `x-y = 1`, then find `x^2+y^2`
  3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
  4. If `x+y+z=1,xy+yz+zx=-1` and `xyz=-1` then find `x^3+y^3+z^3`

1. If `x+1/x = 2`, then find `x-1/x`
(Previous method)
3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
(Next method)

1. Examples





2. If `x+y = 5` and `xy = 6`, then find `x^2+y^2`

Solution:
Here `x+y=5 and xy=6`


Now, We know that
`x^2+y^2=(x+y)^2-2 xy`

`:.x^2+y^2=5^2-2*6`

`:.x^2+y^2=25-12`

`:.x^2+y^2=13`


2. If `x+y=5` and `xy=6`, then find `x^2-y^2`

Solution:
Here `x+y=5 and xy=6`


Now, We know that
`(x-y)^2=(x+y)^2-4 xy`

`:.(x-y)^2=5^2-4*6`

`:.(x-y)^2=25-24`

`:.(x-y)^2=1`

`:.x-y=1`


Now, We know that
`x^2-y^2=(x-y) (x+y)`

`:.x^2-y^2=1*5`

`:.x^2-y^2=5`


2. If `x+y=3` and `x-y=15`, then find `x^2+y^2`

Solution:
Here `x+y=3` and `x-y=15`


Now, We know that
`4 xy=(x+y)^2-(x-y)^2`

`:.4 xy=3^2-15^2`

`:.4 xy=9-225`

`:.4 xy=-216`

`:.xy=-216/4`

`:.xy=-54`


Now, We know that
`x^2+y^2=(x+y)^2-2 xy`

`:.x^2+y^2=3^2-2*-54`

`:.x^2+y^2=9--108`

`:.x^2+y^2=117`


2. If `x+y=3` and `x-y=15`, then find `x^2-y^2`

Solution:
Here `x+y=3` and `x-y=15`


Now, We know that
`x^2-y^2=(x-y) (x+y)`

`:.x^2-y^2=3*15`

`:.x^2-y^2=45`


2. If `x+y=3` and `x-y=15`, then find `x^3-y^3`

Solution:
Here `x+y=3` and `x-y=15`


Now, We know that
`4xy=(x+y)^2-(x-y)^2`

`:.4xy=3^2-15^2`

`:.4xy=9-225`

`:.4xy=-216`

`:.xy=-216/4`

`:.xy=-54`


Now, We know that
`x^3-y^3=(x-y)^3+3xy(x-y)`

`:.x^3-y^3=15^3+3*(-54)*15`

`:.x^3-y^3=3375-2430`

`:.x^3-y^3=945`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. If `x+1/x = 2`, then find `x-1/x`
(Previous method)
3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.