2. `y=(x+2)^2-9`, find Parity of a function
Solution:
`y=(x+2)^2-9`
Siplyfing vertex form equation `y=(x+2)^2-9`, we get
`y=(x+2)^2-9`
`y=(x^2+4x+4)-9`
`y=x^2+4x-5`
Parity :
Even Function : A function is even if `f(-x)=f(x)` for all `x in R`
Odd Function : A function is odd if `f(-x)=-f(x)` for all `x in R`
`f(-x)=(-x)^2+4(-x)-5`
`f(-x)=x^2-4x-5`
`f(x)!=f(-x)`
`x^2+4x-5` is not an even function
`-f(x)=-(x^2+4x-5)`
`-f(x)=-x^2-4x+5`
`f(x)!=-f(x)`
`x^2+4x-5` is not an odd function
`:. x^2+4x-5` is neither even nor odd function
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then