1. y=x2+3x-4, find Vertex of a functionSolution:y=x2+3x-41. Vertex : y=x2+3x-4Method-1: Find vertex using polynomial formComparing the equation x^2+3x-4 with
ax2+bx+c, we get
a=1,b=3,c=-4h=-b2a=-32⋅1=-32Now, substitute value of h in f(x), to find value of k
k=f(h)=f(-32)=(-32)2+3(-32)-4:. k=1/2-9/2-4:. k=-25/4Vertex
=(h,k)=(-3/2,-25/4)Method-2: Find vertex using vertex form y=a(x-h)^2+kCompleting the Square
x^2+3x-4=1 (x^2+3x-4)The coefficient of the x is
3, so now we divide this by 2 :
(3 -: 2 = 3/2)and square it
(3/2)^2=9/4. So we add and subtract
9/4=1 (x^2+3x + 9/4 - 9/4 - 4)=1 [(x^2+3x+9/4) -25/4]=1[( x + 3/2 )^2 -25/4 ]:. y=1(x-(-3/2))^2+(-25/4)Now compare with
y=a(x-h)^2+k, we get
a=1,h=-3/2,k=-25/4Vertex
=(h,k)=(-3/2,-25/4)If
a<0 then the vertex is a maximum value
If
a>0 then the vertex is a minimum value
Here
a=1>0So minimum Vertex =
(h,k)=(-3/2,-25/4)2. Graph : some extra points to plot the graph
y=f(x)=x^2+3x-4f(-5)=(-5)^2+3(-5)-4=25-15-4=6f(-4)=(-4)^2+3(-4)-4=16-12-4=0f(-3)=(-3)^2+3(-3)-4=9-9-4=-4f(-2)=(-2)^2+3(-2)-4=4-6-4=-6f(-1)=(-1)^2+3(-1)-4=1-3-4=-6f(0)=(0)^2+3(0)-4=0-4=-4f(1)=(1)^2+3(1)-4=1+3-4=0f(2)=(2)^2+3(2)-4=4+6-4=6f(3)=(3)^2+3(3)-4=9+9-4=14graph

This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then