Home > Algebra calculators > Logarithmic equations example

1. Logarithmic equations example ( Enter your problem )
  1. Formula
  2. Examples-1 (simplify)
  3. Examples-2 (solve)
Other related methods
  1. Logarithmic equations
  2. Log | Logarithm
  3. ln - Natural log
  4. Antilog | Antilogarithm
  5. Anti Natural log

2. Examples-1 (simplify)
(Previous example)
2. Log | Logarithm
(Next method)

3. Examples-2 (solve)





1. Find `log(10,2x)=1`

Solution:
`log(10,2x)=1`

Now, `log_(10)(2x)=1`

`=>log_(10)(2x)=1`

`=>2x=10^1`

`=>2x=10`

`=>x=10/2`

`=>x=5`


2. Find `log(98+sqrt(x^2-12x+36))=2`

Solution:
`log(98+sqrt(x^2-12x+36))=2`

Now, `log(98+sqrt(x^2-12x+36))=2`

`=>log(98+sqrt(x^2-12x+36))=2`

`=>98+sqrt(x^2-12x+36)=10^2`

`=>98+sqrt(x^2-12x+36)=100`

`=>sqrt(x^2-12x+36)+98=100`

`=>sqrt(x^2-12x+36)=100-98`

`=>sqrt(x^2-12x+36)=2`

`=>x^2-12x+36=4`

`=>x^2-12x+32=0`

`=>x^2-4x-8x+32 = 0`

`=>x(x-4)-8(x-4) = 0`

`=>(x-4)(x-8) = 0`

`=>(x-4) = 0" or "(x-8) = 0`

`=>x = 4" or "x = 8`

`x=4,x=8`


3. Find `log(x+1)+log(x-1)=log3`

Solution:
`log(x+1)+log(x-1)=log(3)`

Simplify LHS `=log(x+1)+log(x-1)`

`=log(x+1)+log(x-1)`

`=log((x+1) xx (x-1))`

`=log(x^2-1)`

Now, `log(x^2-1)=log(3)`

`=>log(x^2-1)=log(3)`

`=>x^2-1=3`

`=>x^2=3+1`

`=>x^2=4`

`=>x=2`


4. Find `log(2,x+1)=log(3,27)`

Solution:
`log(2,x+1)=log(3,27)`

Simplify RHS `=log(3,27)`

`=(log(27))/(log(3))`

`=(log(3^(3)))/(log(3))`

`=(3log(3))/(log(3))`

`=3`

Now, `log_(2)(x+1)=3`

`=>log_(2)(x+1)=3`

`=>x+1=2^3`

`=>x+1=8`

`=>x=8-1`

`=>x=7`


5. Find `log(10,log(10,x))=0`

Solution:
`log(10,log(10,x))=0`

Simplify LHS `=log(10,log(10,x))`

`log(10,x)=log_(10)(x)`
`log(10,x)`


`=log_(10)(log_(10)(x))`

Now, `log_(10)(log_(10)(x))=0`

`=>log_(10)(log_(10)(x))=0`

`=>log_(10)(x)=10^0`

`=>log_(10)(x)=1`

`=>x=10^1`

`=>x=10`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Examples-1 (simplify)
(Previous example)
2. Log | Logarithm
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.