1. Find multiplication of `10x+25` and `x-5`Solution:Method-1: Multiply using the Distributive property`(10x+25)*(x-5)`
`=10x*(x-5)+25*(x-5)` [Distribute `(x-5)`]
`=10x^2-50x+25x-125` (Distribute again)
`=color{blue}{ 10x^2}color{green}{ - 50x}color{green}{ + 25x}color{red}{ - 125}` (Identify like terms)
`=color{blue}{ 10x^2}color{green}{ - 50x}color{green}{ + 25x}color{red}{ - 125}` (Rearrange terms to get like terms together)
`=color{blue}{ 10x^2}color{green}{ - 25x}color{red}{ - 125}` (Combine like terms)
Method-2: Multiply using the Vertical methodSolution using Vertical method
| `x-5` | |
`xx` | `10x+25` | |
|
| |
| `25x-125` | `larr` Multiply `(x-5)` by `25` |
| `10x^2-50x` | `larr` Multiply `(x-5)` by `10x` |
|
| |
| `10x^2-25x-125` | `larr` Add like terms |
Method-3: Multiply using the FOIL methodSolution using FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`
`(10x+25)(x-5)`
`((10x+25)(x-5))`
FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`
Multiply First, Outer, Inner, Last :
(F) First, multiply first terms of each binomial: `color{red}{10x}*color{green}{x}=10x^2`
(O) Outside, multiply outside terms of the binomial: `color{red}{10x}*color{purple}{(-5)}=(-50x)`
(I) Inside, multiply inside terms of the binomial: `color{blue}{25}*color{green}{x}=25x`
(L) Last, multiply last terms of each binomial: `color{blue}{25}*color{purple}{(-5)}=(-125)`
Put the terms together
`=10x^2+(-50x)+25x+(-125)`
Combine like terms to simpplify
`=10x^2-25x-125`
Solution Method-2 of FOIL method
FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`
`=(color{red}{10x}+color{blue}{25})(color{green}{x}+color{purple}{(-5)})`
`=color{red}{10x}*(color{green}{x}+color{purple}{(-5)})+color{blue}{25}*(color{green}{x}+color{purple}{(-5)})`
`=color{red}{10x}*color{green}{x}+color{red}{10x}*color{purple}{(-5)}+color{blue}{25}*color{green}{x}+color{blue}{25}*color{purple}{(-5)}`
`=10x^2+(-50x)+25x+(-125)`
`=10x^2-25x-125`
2. Find multiplication of `x-2` and `x^2+4x-8`Solution:Method-1: Multiply using the Distributive property`(x-2)*(x^2+4x-8)`
`=x*(x^2+4x-8)-2*(x^2+4x-8)` [Distribute `(x^2+4x-8)`]
`=x^3+4x^2-8x-2x^2-8x+16` (Distribute again)
`=color{maroon}{ x^3}color{blue}{ + 4x^2}color{green}{ - 8x}color{blue}{ - 2x^2}color{green}{ - 8x}color{red}{ + 16}` (Identify like terms)
`=color{maroon}{ x^3}color{blue}{ + 4x^2}color{blue}{ - 2x^2}color{green}{ - 8x}color{green}{ - 8x}color{red}{ + 16}` (Rearrange terms to get like terms together)
`=color{maroon}{ x^3}color{blue}{ + 2x^2}color{green}{ - 16x}color{red}{ + 16}` (Combine like terms)
Method-2: Multiply using the Vertical methodSolution using Vertical method
| `x^2+4x-8` | |
`xx` | `x-2` | |
|
| |
| `-2x^2-8x+16` | `larr` Multiply `(x^2+4x-8)` by `-2` |
| `x^3+4x^2-8x` | `larr` Multiply `(x^2+4x-8)` by `x` |
|
| |
| `x^3+2x^2-16x+16` | `larr` Add like terms |
3. Find multiplication of `x^2-4x-16` and `x^2+x-8`Solution:Method-1: Multiply using the Distributive property`(x^2-4x-16)*(x^2+x-8)`
`=x^2*(x^2+x-8)-4x*(x^2+x-8)-16*(x^2+x-8)` [Distribute `(x^2+x-8)`]
`=x^4+x^3-8x^2-4x^3-4x^2+32x-16x^2-16x+128` (Distribute again)
`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{blue}{ - 8x^2}color{maroon}{ - 4x^3}color{blue}{ - 4x^2}color{green}{ + 32x}color{blue}{ - 16x^2}color{green}{ - 16x}color{red}{ + 128}` (Identify like terms)
`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{maroon}{ - 4x^3}color{blue}{ - 8x^2}color{blue}{ - 4x^2}color{blue}{ - 16x^2}color{green}{ + 32x}color{green}{ - 16x}color{red}{ + 128}` (Rearrange terms to get like terms together)
`=color{fuchsia}{ x^4}color{maroon}{ - 3x^3}color{blue}{ - 28x^2}color{green}{ + 16x}color{red}{ + 128}` (Combine like terms)
Method-2: Multiply using the Vertical methodSolution using Vertical method
| `x^2+x-8` | |
`xx` | `x^2-4x-16` | |
|
| |
| `-16x^2-16x+128` | `larr` Multiply `(x^2+x-8)` by `-16` |
| `-4x^3-4x^2+32x` | `larr` Multiply `(x^2+x-8)` by `-4x` |
| `x^4+x^3-8x^2` | `larr` Multiply `(x^2+x-8)` by `x^2` |
|
| |
| `x^4-3x^3-28x^2+16x+128` | `larr` Add like terms |
4. Find multiplication of `x^2+2x+3` and `x^2+x-1`Solution:Method-1: Multiply using the Distributive property`(x^2+2x+3)*(x^2+x-1)`
`=x^2*(x^2+x-1)+2x*(x^2+x-1)+3*(x^2+x-1)` [Distribute `(x^2+x-1)`]
`=x^4+x^3-x^2+2x^3+2x^2-2x+3x^2+3x-3` (Distribute again)
`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{blue}{ - x^2}color{maroon}{ + 2x^3}color{blue}{ + 2x^2}color{green}{ - 2x}color{blue}{ + 3x^2}color{green}{ + 3x}color{red}{ - 3}` (Identify like terms)
`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{maroon}{ + 2x^3}color{blue}{ - x^2}color{blue}{ + 2x^2}color{blue}{ + 3x^2}color{green}{ - 2x}color{green}{ + 3x}color{red}{ - 3}` (Rearrange terms to get like terms together)
`=color{fuchsia}{ x^4}color{maroon}{ + 3x^3}color{blue}{ + 4x^2}color{green}{ + x}color{red}{ - 3}` (Combine like terms)
Method-2: Multiply using the Vertical methodSolution using Vertical method
| `x^2+x-1` | |
`xx` | `x^2+2x+3` | |
|
| |
| `3x^2+3x-3` | `larr` Multiply `(x^2+x-1)` by `3` |
| `2x^3+2x^2-2x` | `larr` Multiply `(x^2+x-1)` by `2x` |
| `x^4+x^3-x^2` | `larr` Multiply `(x^2+x-1)` by `x^2` |
|
| |
| `x^4+3x^3+4x^2+x-3` | `larr` Add like terms |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then