Home > Algebra calculators > Multiplication of two polynomials example

3. Multiplying Polynomials example ( Enter your problem )
  1. Examples
Other related methods
  1. Adding polynomials
  2. Subtracting polynomials
  3. Multiplying Polynomials
  4. polynomial Long division
  5. polynomial Synthetic division
  6. Remainder theorem

2. Subtracting polynomials
(Previous method)
4. polynomial Long division
(Next method)

1. Examples





1. Find multiplication of `10x+25` and `x-5`

Solution:
Method-1: Multiply using the Distributive property
`(10x+25)*(x-5)`

`=10x*(x-5)+25*(x-5)` [Distribute `(x-5)`]

`=10x^2-50x+25x-125` (Distribute again)

`=color{blue}{ 10x^2}color{green}{ - 50x}color{green}{ + 25x}color{red}{ - 125}` (Identify like terms)

`=color{blue}{ 10x^2}color{green}{ - 50x}color{green}{ + 25x}color{red}{ - 125}` (Rearrange terms to get like terms together)

`=color{blue}{ 10x^2}color{green}{ - 25x}color{red}{ - 125}` (Combine like terms)


Method-2: Multiply using the Vertical method
Solution using Vertical method

`x-5`
`xx``10x+25`

`25x-125``larr` Multiply `(x-5)` by `25`
`10x^2-50x``larr` Multiply `(x-5)` by `10x`

`10x^2-25x-125``larr` Add like terms



Method-3: Multiply using the FOIL method
Solution using FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`


`(10x+25)(x-5)`

`((10x+25)(x-5))`

FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`

Multiply First, Outer, Inner, Last :
(F) First, multiply first terms of each binomial: `color{red}{10x}*color{green}{x}=10x^2`

(O) Outside, multiply outside terms of the binomial: `color{red}{10x}*color{purple}{(-5)}=(-50x)`

(I) Inside, multiply inside terms of the binomial: `color{blue}{25}*color{green}{x}=25x`

(L) Last, multiply last terms of each binomial: `color{blue}{25}*color{purple}{(-5)}=(-125)`

Put the terms together
`=10x^2+(-50x)+25x+(-125)`

Combine like terms to simpplify
`=10x^2-25x-125`



Solution Method-2 of FOIL method

FOIL method : `(a+b)(c+d)=ac+ad+bc+bd`

`=(color{red}{10x}+color{blue}{25})(color{green}{x}+color{purple}{(-5)})`

`=color{red}{10x}*(color{green}{x}+color{purple}{(-5)})+color{blue}{25}*(color{green}{x}+color{purple}{(-5)})`

`=color{red}{10x}*color{green}{x}+color{red}{10x}*color{purple}{(-5)}+color{blue}{25}*color{green}{x}+color{blue}{25}*color{purple}{(-5)}`

`=10x^2+(-50x)+25x+(-125)`

`=10x^2-25x-125`

2. Find multiplication of `x-2` and `x^2+4x-8`

Solution:
Method-1: Multiply using the Distributive property
`(x-2)*(x^2+4x-8)`

`=x*(x^2+4x-8)-2*(x^2+4x-8)` [Distribute `(x^2+4x-8)`]

`=x^3+4x^2-8x-2x^2-8x+16` (Distribute again)

`=color{maroon}{ x^3}color{blue}{ + 4x^2}color{green}{ - 8x}color{blue}{ - 2x^2}color{green}{ - 8x}color{red}{ + 16}` (Identify like terms)

`=color{maroon}{ x^3}color{blue}{ + 4x^2}color{blue}{ - 2x^2}color{green}{ - 8x}color{green}{ - 8x}color{red}{ + 16}` (Rearrange terms to get like terms together)

`=color{maroon}{ x^3}color{blue}{ + 2x^2}color{green}{ - 16x}color{red}{ + 16}` (Combine like terms)


Method-2: Multiply using the Vertical method
Solution using Vertical method

`x^2+4x-8`
`xx``x-2`

`-2x^2-8x+16``larr` Multiply `(x^2+4x-8)` by `-2`
`x^3+4x^2-8x``larr` Multiply `(x^2+4x-8)` by `x`

`x^3+2x^2-16x+16``larr` Add like terms

3. Find multiplication of `x^2-4x-16` and `x^2+x-8`

Solution:
Method-1: Multiply using the Distributive property
`(x^2-4x-16)*(x^2+x-8)`

`=x^2*(x^2+x-8)-4x*(x^2+x-8)-16*(x^2+x-8)` [Distribute `(x^2+x-8)`]

`=x^4+x^3-8x^2-4x^3-4x^2+32x-16x^2-16x+128` (Distribute again)

`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{blue}{ - 8x^2}color{maroon}{ - 4x^3}color{blue}{ - 4x^2}color{green}{ + 32x}color{blue}{ - 16x^2}color{green}{ - 16x}color{red}{ + 128}` (Identify like terms)

`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{maroon}{ - 4x^3}color{blue}{ - 8x^2}color{blue}{ - 4x^2}color{blue}{ - 16x^2}color{green}{ + 32x}color{green}{ - 16x}color{red}{ + 128}` (Rearrange terms to get like terms together)

`=color{fuchsia}{ x^4}color{maroon}{ - 3x^3}color{blue}{ - 28x^2}color{green}{ + 16x}color{red}{ + 128}` (Combine like terms)


Method-2: Multiply using the Vertical method
Solution using Vertical method

`x^2+x-8`
`xx``x^2-4x-16`

`-16x^2-16x+128``larr` Multiply `(x^2+x-8)` by `-16`
`-4x^3-4x^2+32x``larr` Multiply `(x^2+x-8)` by `-4x`
`x^4+x^3-8x^2``larr` Multiply `(x^2+x-8)` by `x^2`

`x^4-3x^3-28x^2+16x+128``larr` Add like terms

4. Find multiplication of `x^2+2x+3` and `x^2+x-1`

Solution:
Method-1: Multiply using the Distributive property
`(x^2+2x+3)*(x^2+x-1)`

`=x^2*(x^2+x-1)+2x*(x^2+x-1)+3*(x^2+x-1)` [Distribute `(x^2+x-1)`]

`=x^4+x^3-x^2+2x^3+2x^2-2x+3x^2+3x-3` (Distribute again)

`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{blue}{ - x^2}color{maroon}{ + 2x^3}color{blue}{ + 2x^2}color{green}{ - 2x}color{blue}{ + 3x^2}color{green}{ + 3x}color{red}{ - 3}` (Identify like terms)

`=color{fuchsia}{ x^4}color{maroon}{ + x^3}color{maroon}{ + 2x^3}color{blue}{ - x^2}color{blue}{ + 2x^2}color{blue}{ + 3x^2}color{green}{ - 2x}color{green}{ + 3x}color{red}{ - 3}` (Rearrange terms to get like terms together)

`=color{fuchsia}{ x^4}color{maroon}{ + 3x^3}color{blue}{ + 4x^2}color{green}{ + x}color{red}{ - 3}` (Combine like terms)


Method-2: Multiply using the Vertical method
Solution using Vertical method

`x^2+x-1`
`xx``x^2+2x+3`

`3x^2+3x-3``larr` Multiply `(x^2+x-1)` by `3`
`2x^3+2x^2-2x``larr` Multiply `(x^2+x-1)` by `2x`
`x^4+x^3-x^2``larr` Multiply `(x^2+x-1)` by `x^2`

`x^4+3x^3+4x^2+x-3``larr` Add like terms



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Subtracting polynomials
(Previous method)
4. polynomial Long division
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.