Home > Algebra calculators > Geometric Mean example

Ratio and Proportion - 5. Geometric Mean example ( Enter your problem )
  1. Examples
Other related methods
  1. If `a:b:c=2:3:5` then find value of `(a^2+b^2+c^2)/(ab+bc+ca)`
  2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
  3. If `a/b=c/d=e/f` then prove that `(2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)`
  4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
  5. Geometric Mean
  6. Duplicate ratio
  7. Triplicate ratio
  8. Sub-Duplicate ratio
  9. Sub-Triplicate ratio
  10. Compounded ratio
  11. Mean proportional
  12. Third proportional
  13. Fourth proportional
  14. Compare ratios

4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
(Previous method)
6. Duplicate ratio
(Next method)

1. Examples





1. Geometric Mean of `16a^4,81/b^4`

Solution:
The geometric mean of `16a^4` and `81/b^4`

`=sqrt(16a^4 xx 81/b^4)`

`=sqrt((1296a^4)/(b^4))`

`=(36a^2)/(b^2)`


2. If geometric mean `9x` and x is `6x^2`, find value of x

Solution:
The geometric mean of `9x` and `X` is `6x^2`

`6x^2=sqrt(9x xx X)`

`:. (6x^2)^2=9x xx X`

`:. 36x^4=9x xx X`

`:. X=(36x^4)/(9x)`

`:. X=4x^(3)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
(Previous method)
6. Duplicate ratio
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.