1. Find `(2*10^5) * (13*10^-3)`
Solution:
`(2*10^5) xx (13*10^-3)` | |
`=(2xx13) xx (10^5xx10^-3)` | (Group the numbers) |
`=26 xx (10^(5 + -3))` | `("law of indices " a^m xx a^n=a^(m+n))` |
`=26xx10^2` | |
`=(2.6xx10^1)xx10^2` | (Write 26 in scientific notation) |
`=2.6xx10^3` | |
2. Find `(8*10^5) * (9*10^-3)`
Solution:
`(8*10^5) xx (9*10^-3)` | |
`=(8xx9) xx (10^5xx10^-3)` | (Group the numbers) |
`=72 xx (10^(5 + -3))` | `("law of indices " a^m xx a^n=a^(m+n))` |
`=72xx10^2` | |
`=(7.2xx10^1)xx10^2` | (Write 72 in scientific notation) |
`=7.2xx10^3` | |
3. Find `(5*10^-4) * (6*10^-3)`
Solution:
`(5*10^-4) xx (6*10^-3)` | |
`=(5xx6) xx (10^-4xx10^-3)` | (Group the numbers) |
`=30 xx (10^(-4 + -3))` | `("law of indices " a^m xx a^n=a^(m+n))` |
`=30xx10^-7` | |
`=(3xx10^1)xx10^-7` | (Write 30 in scientific notation) |
`=3xx10^-6` | |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then