Home > Statistical Methods calculators > Geometric mean, Harmonic mean for grouped data example

Geometric mean Example for grouped data ( Enter your problem )
  1. Formula & Example
  2. Geometric mean Example
  3. Harmonic mean Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Mode using Grouping Method
  19. Less than type Cumulative frequency table
  20. More than type Cumulative frequency table
  21. Class and their frequency table

1. Formula & Example
(Previous example)
3. Harmonic mean Example
(Next example)

2. Geometric mean Example





1. Calculate Geometric mean from the following grouped data
XFrequency
15
210
36
43
52


Solution:
Geometric mean :
`x``f``flog(x)`
150
2103.0103
362.8627
431.8062
521.3979
---------
--`n=26``sum flog(x)=9.0771`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((9.0771)/(26))`

`= Antilog(0.3491)`

`= 2.2342`


2. Calculate Geometric mean from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Geometric mean :
ClassMid value (`x`)
`(2)`
`f``flog(x)`
2 - 4331.4314
4 - 6542.7959
6 - 8721.6902
8 - 10910.9542
------------
----`n=10``sum flog(x)=6.8717`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((6.8717)/(10))`

`= Antilog(0.6872)`

`= 4.866`


3. Calculate Geometric mean from the following grouped data
ClassFrequency
0 - 25
2 - 416
4 - 613
6 - 87
8 - 105
10 - 124


Solution:
Geometric mean :
ClassMid value (`x`)
`(2)`
`f``flog(x)`
0 - 2150
2 - 43167.6339
4 - 65139.0866
6 - 8775.9157
8 - 10954.7712
10 - 121144.1656
------------
----`n=50``sum flog(x)=31.573`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((31.573)/(50))`

`= Antilog(0.6315)`

`= 4.2802`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Harmonic mean Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.