Home > Statistical Methods calculators > Geometric mean, Harmonic mean for grouped data example

Geometric mean Example for grouped data ( Enter your problem )
  1. Formula & Example
  2. Geometric mean Example
  3. Harmonic mean Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

1. Formula & Example
(Previous example)
3. Harmonic mean Example
(Next example)

2. Geometric mean Example





1. Calculate Geometric mean from the following grouped data
XFrequency
15
210
36
43
52


Solution:
Geometric mean :
`x``f``flog(x)`
150
2103.0103
362.8627
431.8062
521.3979
---------
--`n=26``sum flog(x)=9.0771`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((9.0771)/(26))`

`= Antilog(0.3491)`

`= 2.2342`


2. Calculate Geometric mean from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Geometric mean :
ClassMid value (`x`)
`(2)`
`f``flog(x)`
2 - 4331.4314
4 - 6542.7959
6 - 8721.6902
8 - 10910.9542
------------
----`n=10``sum flog(x)=6.8717`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((6.8717)/(10))`

`= Antilog(0.6872)`

`= 4.866`


3. Calculate Geometric mean from the following grouped data
ClassFrequency
0 - 25
2 - 416
4 - 613
6 - 87
8 - 105
10 - 124


Solution:
Geometric mean :
ClassMid value (`x`)
`(2)`
`f``flog(x)`
0 - 2150
2 - 43167.6339
4 - 65139.0866
6 - 8775.9157
8 - 10954.7712
10 - 121144.1656
------------
----`n=50``sum flog(x)=31.573`


GM of X `= Antilog((sum flog(x))/n)`

`= Antilog((31.573)/(50))`

`= Antilog(0.6315)`

`= 4.2802`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Harmonic mean Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.