Home > Statistical Methods calculators > Sample Skewness, Kurtosis for grouped data example

Sample Skewness Example for grouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Skewness Example
  3. Sample Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)

2. Sample Skewness Example





1. Calculate Sample Skewness from the following grouped data
XFrequency
01
15
210
36
43


Solution:
Skewness :
Mean `bar x=(sum f x)/n`

`=55/25`

`=2.2`

`x`
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
010-2.24.84-10.648
155-1.27.2-8.64
21020-0.20.4-0.08
36180.83.843.072
43121.89.7217.496
------------------
--`n=25``sum f*x=55``--`=26``=1.2`


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(26/24)`

`=sqrt(1.0833)`

`=1.0408`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=1.2/(24*(1.0408)^3)`

`=1.2/(24*1.1276)`

`=0.0443`


2. Calculate Sample Skewness from the following grouped data
XFrequency
103
1112
1218
1312
143


Solution:
Skewness :
Mean `bar x=(sum f x)/n`

`=576/48`

`=12`

`x`
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
10330-212-24
1112132-112-12
1218216000
131215611212
1434221224
------------------
--`n=48``sum f*x=576``--`=48``=0`


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(48/47)`

`=sqrt(1.0213)`

`=1.0106`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=0/(47*(1.0106)^3)`

`=0/(47*1.0321)`

`=0`


3. Calculate Sample Skewness from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Skewness :
Mean `bar x=(sum f x)/(sum f)`

`=52/10`

`=5.2`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
2 - 4339-2.214.52-31.944
4 - 65420-0.20.16-0.032
6 - 872141.86.4811.664
8 - 109193.814.4454.872
---------------------
----`n=10``sum f*x=52``--`=35.6``=34.56`


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(35.6/9)`

`=sqrt(3.9556)`

`=1.9889`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=34.56/(9*(1.9889)^3)`

`=34.56/(9*7.867)`

`=0.4881`


4. Calculate Sample Skewness from the following grouped data
ClassFrequency
0 - 25
2 - 416
4 - 613
6 - 87
8 - 105
10 - 124


Solution:
Skewness :
Mean `bar x=(sum f x)/(sum f)`

`=256/50`

`=5.12`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
0 - 2155-4.1284.872-349.6726
2 - 431648-2.1271.9104-152.45
4 - 651365-0.120.1872-0.0225
6 - 877491.8824.740846.5127
8 - 1095453.8875.272292.0554
10 - 12114445.88138.2976813.1899
---------------------
----`n=50``sum f*x=256``--`=395.28``=649.6128`


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(395.28/49)`

`=sqrt(8.0669)`

`=2.8402`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=649.6128/(49*(2.8402)^3)`

`=649.6128/(49*22.912)`

`=0.5786`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.