Home > Statistical Methods calculators > Mean, Median and Mode for mixed data example

Mean, Median and Mode for mixed data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Population Variance, Standard deviation and coefficient of variation
  3. Sample Variance, Standard deviation and coefficient of variation

2. Mean Example
(Next example)

1. Formula & Example





Formula
1. Mean bar x = (sum fx)/n
2. Median M = L + (n/2 - cf)/f * c
3. Mode Z = 3M - 2 bar x

Examples
1. Calculate Mean, Median, Mode from the following mixed data
ClassFrequency
13
24
510
6 - 1023
10 - 2020
20 - 3020
30 - 5015
50 - 703
70 - 1002


Solution:
Class
(1)
Frequency (f)
(2)
Mid value (x)
(3)
f*x
(4)=(2)xx(3)
cf
(6)
13 1 1=1 3 3=3xx1
(4)=(2)xx(3)
 3 3=0+3
(6)=Previous (6)+(2)
24 2 2=2 8 8=4xx2
(4)=(2)xx(3)
 7 7=3+4
(6)=Previous (6)+(2)
510 5 5=5 50 50=10xx5
(4)=(2)xx(3)
 17 17=7+10
(6)=Previous (6)+(2)
6 - 1023 8 8=(6+10)/2 184 184=23xx8
(4)=(2)xx(3)
 40 40=17+23
(6)=Previous (6)+(2)
10 - 2020 15 15=(10+20)/2 300 300=20xx15
(4)=(2)xx(3)
 60 60=40+20
(6)=Previous (6)+(2)
20 - 3020 25 25=(20+30)/2 500 500=20xx25
(4)=(2)xx(3)
 80 80=60+20
(6)=Previous (6)+(2)
30 - 5015 40 40=(30+50)/2 600 600=15xx40
(4)=(2)xx(3)
 95 95=80+15
(6)=Previous (6)+(2)
50 - 703 60 60=(50+70)/2 180 180=3xx60
(4)=(2)xx(3)
 98 98=95+3
(6)=Previous (6)+(2)
70 - 1002 85 85=(70+100)/2 170 170=2xx85
(4)=(2)xx(3)
 100 100=98+2
(6)=Previous (6)+(2)
---------------
n = 100-----sum f*x=1995-----


Mean bar x = (sum fx)/n

=1995/100

=19.95



To find Median Class
= value of (n/2)^(th) observation

= value of (100/2)^(th) observation

= value of 50^(th) observation

From the column of cumulative frequency cf, we find that the 50^(th) observation lies in the class 10 - 20.

:. The median class is 10 - 20.

Now,
:. L = lower boundary point of median class =10

:. n = Total frequency =100

:. cf = Cumulative frequency of the class preceding the median class =40

:. f = Frequency of the median class =20

:. c = class length of median class =10

Median M = L + (n/2 - cf)/f * c

=10 + (50 - 40)/20 * 10

=10 + (10)/20 * 10

=10 + 5

=15



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
Z = 3M - 2 bar x

=3 * 15 - 2 * 19.95

=45 - 39.9

=5.1
2. Calculate Mean, Median, Mode from the following mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
(1)
Frequency (f)
(2)
Mid value (x)
(3)
f*x
(4)=(2)xx(3)
cf
(6)
21221
32363
42485
5 - 9875613
10 - 14151218028
15 - 1981713636
20 - 29424.59840
---------------
n = 40-----sum f*x=486-----


Mean bar x = (sum fx)/n

=486/40

=12.15



To find Median Class
= value of (n/2)^(th) observation

= value of (40/2)^(th) observation

= value of 20^(th) observation

From the column of cumulative frequency cf, we find that the 20^(th) observation lies in the class 10 - 14.

:. The median class is 9.5 - 14.5.

Now,
:. L = lower boundary point of median class =9.5

:. n = Total frequency =40

:. cf = Cumulative frequency of the class preceding the median class =13

:. f = Frequency of the median class =15

:. c = class length of median class =5

Median M = L + (n/2 - cf)/f * c

=9.5 + (20 - 13)/15 * 5

=9.5 + (7)/15 * 5

=9.5 + 2.3333

=11.8333



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
Z = 3M - 2 bar x

=3 * 11.8333 - 2 * 12.15

=35.5 - 24.3

=11.2


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.