Home > Statistical Methods calculators > Mean, Median and Mode for mixed data example

Mean, Median and Mode for mixed data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Mean Example
  3. Median Example
  4. Mode Example
Other related methods
  1. Mean, Median and Mode
  2. Population Variance, Standard deviation and coefficient of variation
  3. Sample Variance, Standard deviation and coefficient of variation

2. Mean Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum fx)/n`
2. Median `M = L + (n/2 - cf)/f * c`
3. Mode `Z = 3M - 2 bar x`

Examples
1. Calculate Mean, Median, Mode from the following mixed data
ClassFrequency
13
24
510
6 - 1023
10 - 2020
20 - 3020
30 - 5015
50 - 703
70 - 1002


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`cf`
`(6)`
13 1 `1=1` 3 `3=3xx1`
`(4)=(2)xx(3)`
 3 `3=0+3`
`(6)=`Previous `(6)+(2)`
24 2 `2=2` 8 `8=4xx2`
`(4)=(2)xx(3)`
 7 `7=3+4`
`(6)=`Previous `(6)+(2)`
510 5 `5=5` 50 `50=10xx5`
`(4)=(2)xx(3)`
 17 `17=7+10`
`(6)=`Previous `(6)+(2)`
6 - 1023 8 `8=(6+10)/2` 184 `184=23xx8`
`(4)=(2)xx(3)`
 40 `40=17+23`
`(6)=`Previous `(6)+(2)`
10 - 2020 15 `15=(10+20)/2` 300 `300=20xx15`
`(4)=(2)xx(3)`
 60 `60=40+20`
`(6)=`Previous `(6)+(2)`
20 - 3020 25 `25=(20+30)/2` 500 `500=20xx25`
`(4)=(2)xx(3)`
 80 `80=60+20`
`(6)=`Previous `(6)+(2)`
30 - 5015 40 `40=(30+50)/2` 600 `600=15xx40`
`(4)=(2)xx(3)`
 95 `95=80+15`
`(6)=`Previous `(6)+(2)`
50 - 703 60 `60=(50+70)/2` 180 `180=3xx60`
`(4)=(2)xx(3)`
 98 `98=95+3`
`(6)=`Previous `(6)+(2)`
70 - 1002 85 `85=(70+100)/2` 170 `170=2xx85`
`(4)=(2)xx(3)`
 100 `100=98+2`
`(6)=`Previous `(6)+(2)`
---------------
`n = 100`-----`sum f*x=1995`-----


Mean `bar x = (sum fx)/n`

`=1995/100`

`=19.95`



To find Median Class
= value of `(n/2)^(th)` observation

= value of `(100/2)^(th)` observation

= value of `50^(th)` observation

From the column of cumulative frequency `cf`, we find that the `50^(th)` observation lies in the class `10 - 20`.

`:.` The median class is `10 - 20`.

Now,
`:. L = `lower boundary point of median class `=10`

`:. n = `Total frequency `=100`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=20`

`:. c = `class length of median class `=10`

Median `M = L + (n/2 - cf)/f * c`

`=10 + (50 - 40)/20 * 10`

`=10 + (10)/20 * 10`

`=10 + 5`

`=15`



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
`Z = 3M - 2 bar x`

`=3 * 15 - 2 * 19.95`

`=45 - 39.9`

`=5.1`
2. Calculate Mean, Median, Mode from the following mixed data
ClassFrequency
21
32
42
5 - 98
10 - 1415
15 - 198
20 - 294


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
Mid value `(x)`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`cf`
`(6)`
21221
32363
42485
5 - 9875613
10 - 14151218028
15 - 1981713636
20 - 29424.59840
---------------
`n = 40`-----`sum f*x=486`-----


Mean `bar x = (sum fx)/n`

`=486/40`

`=12.15`



To find Median Class
= value of `(n/2)^(th)` observation

= value of `(40/2)^(th)` observation

= value of `20^(th)` observation

From the column of cumulative frequency `cf`, we find that the `20^(th)` observation lies in the class `10 - 14`.

`:.` The median class is `9.5 - 14.5`.

Now,
`:. L = `lower boundary point of median class `=9.5`

`:. n = `Total frequency `=40`

`:. cf = `Cumulative frequency of the class preceding the median class `=13`

`:. f = `Frequency of the median class `=15`

`:. c = `class length of median class `=5`

Median `M = L + (n/2 - cf)/f * c`

`=9.5 + (20 - 13)/15 * 5`

`=9.5 + (7)/15 * 5`

`=9.5 + 2.3333`

`=11.8333`



Mode :
The given data is uni-model.
Hence, we find the mode with the help of the formula.
`Z = 3M - 2 bar x`

`=3 * 11.8333 - 2 * 12.15`

`=35.5 - 24.3`

`=11.2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Mean Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.