Home > Calculus calculators > Solve expression example

2. If sin(x)=1/2, then solve expression cos(x)csc(x)+tan(x)sec(x) example ( Enter your problem )
  1. If `sin(x)=3/5`, solve `cos(x)csc(x)+tan(x)sec(x)`
  2. If `cos(x)=3/5`, solve `(1-sin(x))/cos(x)+cos(x)/(1-sin(x))`
  3. If `tan(x)=1/2`, solve `(1-tan^2(x))/(1+tan^2(x))+(2tan(x))/(1+tan^2(x))`
  4. If `cos(x)=3/5`, solve `(1-sin(x))/cos(x)+cos(x)/(1-sin(x))`
Other related methods
  1. Simplifying trigonometric equations, proving identities
  2. Find the value of other five trigonometric functions
  3. Find the value of other five trigonometric functions and solve expression
  4. For P(3,4), find the value of all six trigonometric functions
  5. The Equation for the terminal Side `theta` is `2x+y=0, x>=0`. Find the value of all six trigonometric functions

2. Find the value of other five trigonometric functions
(Previous method)
2. If `cos(x)=3/5`, solve `(1-sin(x))/cos(x)+cos(x)/(1-sin(x))`
(Next example)

1. If `sin(x)=3/5`, solve `cos(x)csc(x)+tan(x)sec(x)`





1. If `sin(x)=3/5`, solve `cos(x)csc(x)+tan(x)sec(x)`

Solution:
`sin(x)=3/5` (given)

`cos(x)csc(x)+tan(x)sec(x)=?`

`sin(x)=3/5`, in Quadrant-1

`(1)` `cos^2(x)=1-sin^2(x)`

`=1-(3/5)^2`

`=1-9/25`

`=(25-9)/25`

`=16/25`

`:.cos(x)=sqrt(16/25)=4/5=4/5`


`(2)` `tan(x)=sin(x)/cos(x)=(3/5)/(4/5)=3/5 xx 5/4=3/4=3/4`


`(3)` `csc(x)=1/sin(x)=1/(3/5)=5/3=5/3`


`(4)` `sec(x)=1/cos(x)=1/(4/5)=5/4=5/4`


Now substitute all these expression values in
`cos(x)csc(x)+tan(x)sec(x)`

`=(4/5)(5/3)+(3/4)(5/4)`

`=4/3+15/16`

`=109/48`

`:. cos(x)csc(x)+tan(x)sec(x)=109/48`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Find the value of other five trigonometric functions
(Previous method)
2. If `cos(x)=3/5`, solve `(1-sin(x))/cos(x)+cos(x)/(1-sin(x))`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.