Home > Matrix & Vector calculators > Inverse of a matrix example

8. Inverse matrix example ( Enter your problem )
  1. Definition and Examples
  2. Example-2
Other related methods
  1. Addition of two matrix
  2. Multiplication of two matrix
  3. Division of two matrix
  4. Power of a matrix
  5. Transpose of a matrix
  6. Determinant of a matrix
  7. Adjoint of a matrix
  8. Inverse of a matrix
  9. Prove that any two matrix expression is equal or not
  10. Minor of a matrix
  11. Cofactor of a matrix
  12. Trace of a matrix

1. Definition and Examples
(Previous example)
9. Prove that any two matrix expression is equal or not
(Next method)

2. Example-2





1. Find `A^-1` ...
`A=[[1,2],[4,5]]`


Solution:
`|A|` = 
 `1`  `2` 
 `4`  `5` 


`=1 × 5 - 2 × 4`

`=5 -8`

`=-3`


`Adj(A)` = 
Adj
`1``2`
`4``5`


 = 
`+(5)``-(4)`
`-(2)``+(1)`
T


 = 
`5``-4`
`-2``1`
T


 = 
`5``-2`
`-4``1`


`"Now, "A^(-1)=1/|A| × Adj(A)`

 = `1/(-3)` ×
`5``-2`
`-4``1`


 = 
`-1.6667``0.6667`
`1.3333``-0.3333`

2. Find `A^-1` ...
`A=[[1,2,3],[4,5,6],[7,8,9]]`


Solution:
`|A|` = 
 `1`  `2`  `3` 
 `4`  `5`  `6` 
 `7`  `8`  `9` 


 =
 `1` × 
 `5`  `6` 
 `8`  `9` 
 `-2` × 
 `4`  `6` 
 `7`  `9` 
 `+3` × 
 `4`  `5` 
 `7`  `8` 


`=1 xx (5 × 9 - 6 × 8) -2 xx (4 × 9 - 6 × 7) +3 xx (4 × 8 - 5 × 7)`

`=1 xx (45 -48) -2 xx (36 -42) +3 xx (32 -35)`

`=1 xx (-3) -2 xx (-6) +3 xx (-3)`

`= -3 +12 -9`

`=0`


`Here, |A|=0, " So " (A)^(-1)" is not possible."`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Definition and Examples
(Previous example)
9. Prove that any two matrix expression is equal or not
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.