Home > Statistical Methods calculators > Mean deviation about mean for grouped data example

Mean deviation about median example (Class & Frequency) for grouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example (Class & Frequency)
  3. Mean deviation about mean example (X & Frequency)
  4. Mean deviation about median example (Class & Frequency)
  5. Mean deviation about median example (X & Frequency)
  6. Mean deviation about mode example (Class & Frequency)
  7. Mean deviation about mode example (X & Frequency)

3. Mean deviation about mean example (X & Frequency)
(Previous example)
5. Mean deviation about median example (X & Frequency)
(Next example)

4. Mean deviation about median example (Class & Frequency)





Formula
1. Mean deviation of Mean `delta bar x = (sum f*|x - bar x|)/n`
2. Mean deviation of Mean `delta bar x = (sum f*|x - M|)/n`
3. Mean deviation of Mode `delta bar x = (sum f*|x - Z|)/n`

Examples
1. Calculate Mean deviation about median from the following grouped data
Class-XFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Class
`(1)`
`f`
`(2)`
`cf`
`(3)`
Mid value (`x`)
`(4)`
`|x-M|=|x-5|`
`(5)`
`f*|x-M|`
`(6)=(2)xx(5)`
2 - 43 3 `3=0+3`
`(3)=`Previous `(3)+(2)`
 3 `3=(2+4)/2` 2 `|3-5|=2`
`|x - 5|`
 6 `6=3xx2`
`(6)=(2)xx(5)`
4 - 64 7 `7=3+4`
`(3)=`Previous `(3)+(2)`
 5 `5=(4+6)/2` 0 `|5-5|=0`
`|x - 5|`
 0 `0=4xx0`
`(6)=(2)xx(5)`
6 - 82 9 `9=7+2`
`(3)=`Previous `(3)+(2)`
 7 `7=(6+8)/2` 2 `|7-5|=2`
`|x - 5|`
 4 `4=2xx2`
`(6)=(2)xx(5)`
8 - 101 10 `10=9+1`
`(3)=`Previous `(3)+(2)`
 9 `9=(8+10)/2` 4 `|9-5|=4`
`|x - 5|`
 4 `4=1xx4`
`(6)=(2)xx(5)`
------------------
--`n=10`------`sum f*|x-M|=14`


To find Median Class
= value of `(n/2)^(th)` observation

= value of `(10/2)^(th)` observation

= value of `5^(th)` observation

From the column of cumulative frequency `cf`, we find that the `5^(th)` observation lies in the class `4 - 6`.

`:.` The median class is `4 - 6`.

Now,
`:. L = `lower boundary point of median class `=4`

`:. n = `Total frequency `=10`

`:. cf = `Cumulative frequency of the class preceding the median class `=3`

`:. f = `Frequency of the median class `=4`

`:. c = `class length of median class `=2`

Median `M = L + (n/2 - cf)/f * c`

`=4 + (5 - 3)/4 * 2`

`=4 + (2)/4 * 2`

`=4 + 1`

`=5`

Mean deviation of Median
`delta bar x = (sum f*|x - M|)/n`

`delta bar x = 14/10`

`delta bar x = 1.4`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=1.4/5`

`=0.28`
2. Calculate Mean deviation about median from the following grouped data
Class-XFrequency
10 - 2015
20 - 3025
30 - 4020
40 - 5012
50 - 608
60 - 705
70 - 803


Solution:
Class
`(1)`
`f`
`(2)`
`cf`
`(3)`
Mid value (`x`)
`(4)`
`|x-M|=|x-32|`
`(5)`
`f*|x-M|`
`(6)=(2)xx(5)`
10 - 2015151517255
20 - 302540257175
30 - 40206035360
40 - 5012724513156
50 - 608805523184
60 - 705856533165
70 - 803887543129
------------------
--`n=88`------`sum f*|x-M|=1124`


To find Median Class
= value of `(n/2)^(th)` observation

= value of `(88/2)^(th)` observation

= value of `44^(th)` observation

From the column of cumulative frequency `cf`, we find that the `44^(th)` observation lies in the class `30 - 40`.

`:.` The median class is `30 - 40`.

Now,
`:. L = `lower boundary point of median class `=30`

`:. n = `Total frequency `=88`

`:. cf = `Cumulative frequency of the class preceding the median class `=40`

`:. f = `Frequency of the median class `=20`

`:. c = `class length of median class `=10`

Median `M = L + (n/2 - cf)/f * c`

`=30 + (44 - 40)/20 * 10`

`=30 + (4)/20 * 10`

`=30 + 2`

`=32`

Mean deviation of Median
`delta bar x = (sum f*|x - M|)/n`

`delta bar x = 1124/88`

`delta bar x = 12.7727`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=12.7727/32`

`=0.3991`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Mean deviation about mean example (X & Frequency)
(Previous example)
5. Mean deviation about median example (X & Frequency)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.