Home > Statistical Methods calculators > Mean deviation about mean for grouped data example

Mean deviation about median example (X & Frequency) for grouped data ( Enter your problem )
  1. Mean deviation Introduction
  2. Mean deviation about mean example (Class & Frequency)
  3. Mean deviation about mean example (X & Frequency)
  4. Mean deviation about median example (Class & Frequency)
  5. Mean deviation about median example (X & Frequency)
  6. Mean deviation about mode example (Class & Frequency)
  7. Mean deviation about mode example (X & Frequency)

4. Mean deviation about median example (Class & Frequency)
(Previous example)
6. Mean deviation about mode example (Class & Frequency)
(Next example)

5. Mean deviation about median example (X & Frequency)





Formula
1. Mean deviation of Mean `delta bar x = (sum f*|x - bar x|)/n`
2. Mean deviation of Mean `delta bar x = (sum f*|x - M|)/n`
3. Mean deviation of Mode `delta bar x = (sum f*|x - Z|)/n`

Examples
1. Calculate Mean deviation about median from the following grouped data
XFrequency
103
1112
1218
1312
143


Solution:
`x`
`(1)`
`f`
`(2)`
`cf`
`(3)`
`|x-M|=|x-12|`
`(4)`
`f*|x-M|`
`(5)=(2)xx(4)`
103 3 `3=0+3`
`(3)=`Previous `(3)+(2)`
 2 `|x - 12|=|10-12|=2` 6 `6=3xx2`
`(5)=(2)xx(4)`
1112 15 `15=3+12`
`(3)=`Previous `(3)+(2)`
 1 `|x - 12|=|11-12|=1` 12 `12=12xx1`
`(5)=(2)xx(4)`
1218 33 `33=15+18`
`(3)=`Previous `(3)+(2)`
 0 `|x - 12|=|12-12|=0` 0 `0=18xx0`
`(5)=(2)xx(4)`
1312 45 `45=33+12`
`(3)=`Previous `(3)+(2)`
 1 `|x - 12|=|13-12|=1` 12 `12=12xx1`
`(5)=(2)xx(4)`
143 48 `48=45+3`
`(3)=`Previous `(3)+(2)`
 2 `|x - 12|=|14-12|=2` 6 `6=3xx2`
`(5)=(2)xx(4)`
---------------
--`n=48`----`sum f*|x-M|=36`


Median :
M = value of `(n/2)^(th)` observation

= value of `(48/2)^(th)` observation

= value of `24^(th)` observation

From the column of cumulative frequency `cf`, we find that the `24^(th)` observation is `12`.

Hence, the median of the data is `12`.

Mean deviation of Median
`delta bar x = (sum f*|x - M|)/n`

`delta bar x = 36/48`

`delta bar x = 0.75`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=0.75/12`

`=0.0625`
2. Calculate Mean deviation about median from the following grouped data
XFrequency
01
15
210
36
43


Solution:
`x`
`(1)`
`f`
`(2)`
`cf`
`(3)`
`|x-M|=|x-2|`
`(4)`
`f*|x-M|`
`(5)=(2)xx(4)`
01122
15615
2101600
362216
432526
---------------
--`n=25`----`sum f*|x-M|=19`


Median :
M = value of `((n+1)/2)^(th)` observation

= value of `(26/2)^(th)` observation

= value of `13^(th)` observation

From the column of cumulative frequency `cf`, we find that the `13^(th)` observation is `2`.

Hence, the median of the data is `2`.

Mean deviation of Median
`delta bar x = (sum f*|x - M|)/n`

`delta bar x = 19/25`

`delta bar x = 0.76`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=0.76/2`

`=0.38`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Mean deviation about median example (Class & Frequency)
(Previous example)
6. Mean deviation about mode example (Class & Frequency)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.