Solve Equations 2x+5y=16,3x+y=11 using Crout's method
Solution:
Total Equations are `2`
`2x+5y=16 -> (1)`
`3x+y=11 -> (2)`
Now converting given equations into matrix form
`[[2,5],[3,1]] [[x],[y]]=[[16],[11]]`
Now, A = `[[2,5],[3,1]]`, X = `[[x],[y]]` and B = `[[16],[11]]`
Crout's method for LU decomposition
Let `A=LU`
| = | | `l_(11)` | `0` | | | `l_(21)` | `l_(22)` | |
| `xx` | |
| = | | `l_(11)` | `l_(11)u_(12)` | | | `l_(21)` | `l_(21)u_(12) + l_(22)` | |
|
This implies
`l_(11)=2`
`l_(11)u_(12)=5=>2xxu_(12)=5=>u_(12)=5/2`
`l_(21)=3`
`l_(21)u_(12) + l_(22)=1=>3xx5/2 + l_(22)=1=>l_(22)=-13/2`
`:.A=L xx U=LU`
Now, `Ax=B`, and `A=LU => LUx=B`
let `Ux=y`, then `Ly=B =>`
| | | `` | `2y_1` | | | `=` | `16` | `` |
| | | `` | `3y_1` | `-` | `13/2y_2` | `=` | `11` | `` |
Now use forward substitution method
From (1)
`2y_1=16`
`=>2y_1=16`
`=>y_1=(16)/(2)=8`
From (2)
`3y_1-13/2y_2=11`
`=>3(8)-(13y_2)/(2)=11`
`=>24-(13y_2)/(2)=11`
`=>-(13y_2)/(2)=11-24`
`=>-(13y_2)/(2)=-13`
`=>y_2=-13xx-2/13=2`
Now, `Ux=y`
| | | `` | `x` | `+` | `5/2y` | `=` | `8` | `` |
| | | | | `` | `y` | `=` | `2` | `` |
Now use back substitution method
From (2)
`y=2`
From (1)
`x+5/2y=8`
`=>x+(5(2))/(2)=8`
`=>x+5=8`
`=>x=8-5`
`=>x=3`
Solution by Crout's method is
`x=3 and y=2`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then