Home > Statistical Methods calculators > F test example

7. Parametric test - F test example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Non parametric test - Sign test
  2. Non parametric test - Mann whitney U test
  3. Non parametric test - Kruskal-wallis test
  4. Non parametric test - Chi square test
  5. Non parametric test - Median test
  6. Non parametric test - Mood's Median test
  7. Parametric test - F test
  8. Parametric test - t-test
  9. Parametric test - Standard error

1. Example-1
(Previous example)
8. Parametric test - t-test
(Next method)

2. Example-2





2. Parametric test - F test for the following data
66,67,75,76,82,84,88,90,92
64,66,74,78,82,85,87,92,93,95,97, Significance Level `alpha=0.05` and One-tailed test


Solution:
Step-1: Let us take the hypothesis that the two sample have same variance
Null Hypothesis `H_0 : S_1^2 = S_2^2`

Alternative Hypothesis `H_1 : S_1^2 != S_2^2`

Step-2: Calculate `S_1^2` and `S_2^2`

`bar x_1=80` and Variance `S_(1)^2=91.75` for `66,67,75,76,82,84,88,90,92`


`x``x - bar x = x - 80``(x - bar x)^2`
66-14196
67-13169
75-525
76-416
8224
84416
88864
9010100
9212144
---------
`sum x=720``sum (x - bar x)=0``sum (x - bar x)^2=734`


Mean `bar x = (sum x)/n`

`=(66 + 67 + 75 + 76 + 82 + 84 + 88 + 90 + 92)/9`

`=720/9`

`=80`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=734/8`

`=91.75`



`bar x_2=83` and Variance `S_(2)^2=129.8` for `64,66,74,78,82,85,87,92,93,95,97`


`x``x - bar x = x - 83``(x - bar x)^2`
64-19361
66-17289
74-981
78-525
82-11
8524
87416
92981
9310100
9512144
9714196
---------
`sum x=913``sum (x - bar x)=0``sum (x - bar x)^2=1298`


Mean `bar x = (sum x)/n`

`=(64 + 66 + 74 + 78 + 82 + 85 + 87 + 92 + 93 + 95 + 97)/11`

`=913/11`

`=83`



Sample Variance `S^2 = (sum (x - bar x)^2)/(n-1)`

`=1298/10`

`=129.8`



Step-3:
`F=("Larger estimate of variance")/("Smaller estimate of variance")`

`=129.8/91.75`

`=1.4147`

Step-4:
`df_1=8,df_2=10,F_(0.05)=3.0717`

As calculated `F=1.4147 < 3.0717`

So, `H_0` is accepted, Hence Two samples have same variance


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1
(Previous example)
8. Parametric test - t-test
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.